Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,31 @@
|
|
| 1 |
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
# ---- Load model via pipeline ----
|
| 6 |
MODEL_NAME = "vicgalle/gpt2-open-instruct-v1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
pipe = pipeline("text-generation", model=MODEL_NAME, device_map="auto")
|
| 8 |
|
| 9 |
# ---- Inference function ----
|
| 10 |
-
def generate_response(instruction,
|
|
|
|
|
|
|
|
|
|
| 11 |
system_prompt = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
| 12 |
|
| 13 |
### Instruction:
|
|
@@ -15,34 +33,48 @@ def generate_response(instruction, max_new_tokens=150, temperature=0.7, top_k=50
|
|
| 15 |
|
| 16 |
### Response:
|
| 17 |
"""
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
system_prompt,
|
| 20 |
-
max_new_tokens=max_new_tokens,
|
| 21 |
-
temperature=temperature,
|
| 22 |
-
top_k=top_k,
|
| 23 |
-
top_p=top_p,
|
| 24 |
do_sample=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
pad_token_id=pipe.tokenizer.eos_token_id,
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
-
|
| 28 |
-
text =
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# ---- Gradio UI ----
|
| 32 |
with gr.Blocks() as demo:
|
| 33 |
-
gr.Markdown("# 🛸 GPT-2 Open Instruct Playground\
|
| 34 |
with gr.Row():
|
| 35 |
-
with gr.Column(scale=
|
| 36 |
-
instruction = gr.Textbox(label="Instruction",
|
|
|
|
|
|
|
| 37 |
max_new_tokens = gr.Slider(50, 500, value=150, step=10, label="Max new tokens")
|
| 38 |
temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.05, label="Temperature")
|
| 39 |
top_k = gr.Slider(10, 100, value=50, step=5, label="Top-K sampling")
|
| 40 |
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P (nucleus) sampling")
|
| 41 |
generate_btn = gr.Button("Generate ✨")
|
| 42 |
-
with gr.Column(scale=2):
|
| 43 |
-
output_box = gr.Textbox(label="Model Output", lines=10)
|
| 44 |
generate_btn.click(generate_response, [instruction, max_new_tokens, temperature, top_k, top_p], output_box)
|
| 45 |
|
|
|
|
| 46 |
# ---- Launch ----
|
| 47 |
if __name__ == "__main__":
|
| 48 |
demo.launch()
|
|
|
|
| 1 |
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import pipeline, StoppingCriteria, StoppingCriteriaList
|
| 5 |
|
| 6 |
# ---- Load model via pipeline ----
|
| 7 |
MODEL_NAME = "vicgalle/gpt2-open-instruct-v1"
|
| 8 |
+
|
| 9 |
+
class StopOnStrings(StoppingCriteria):
|
| 10 |
+
def __init__(self, stop_ids, window=10):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.stop_ids = stop_ids
|
| 13 |
+
self.window = window
|
| 14 |
+
def __call__(self, input_ids, scores, **kwargs):
|
| 15 |
+
# Stop if the recent tokens match any stop sequence
|
| 16 |
+
for stop in self.stop_ids:
|
| 17 |
+
if len(input_ids[0]) >= len(stop):
|
| 18 |
+
if torch.equal(input_ids[0][-len(stop):], stop):
|
| 19 |
+
return True
|
| 20 |
+
return False
|
| 21 |
+
|
| 22 |
pipe = pipeline("text-generation", model=MODEL_NAME, device_map="auto")
|
| 23 |
|
| 24 |
# ---- Inference function ----
|
| 25 |
+
def generate_response(instruction,
|
| 26 |
+
max_new_tokens=150,
|
| 27 |
+
temperature=0.7,
|
| 28 |
+
top_p=0.9):
|
| 29 |
system_prompt = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
| 30 |
|
| 31 |
### Instruction:
|
|
|
|
| 33 |
|
| 34 |
### Response:
|
| 35 |
"""
|
| 36 |
+
|
| 37 |
+
# Build stop ids for "### End"
|
| 38 |
+
stop_text = "### End"
|
| 39 |
+
stop_ids = pipe.tokenizer(stop_text, add_special_tokens=False, return_tensors="pt")["input_ids"][0]
|
| 40 |
+
stopping = StoppingCriteriaList([StopOnStrings([stop_ids])])
|
| 41 |
+
|
| 42 |
+
out = pipe(
|
| 43 |
system_prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
do_sample=True,
|
| 45 |
+
temperature=temperature,
|
| 46 |
+
top_p=top_p, # prefer one: top_p OR top_k
|
| 47 |
+
# top_k=50, # leave this off when using top_p
|
| 48 |
+
max_new_tokens=max_new_tokens,
|
| 49 |
+
no_repeat_ngram_size=3,
|
| 50 |
+
repetition_penalty=1.15,
|
| 51 |
+
eos_token_id=pipe.tokenizer.eos_token_id,
|
| 52 |
pad_token_id=pipe.tokenizer.eos_token_id,
|
| 53 |
+
return_full_text=False, # don't echo the prompt
|
| 54 |
+
stopping_criteria=stopping,
|
| 55 |
)
|
| 56 |
+
|
| 57 |
+
text = out[0]["generated_text"]
|
| 58 |
+
# Hard stop as a second line of defense
|
| 59 |
+
text = text.split(stop_text)[0].strip()
|
| 60 |
+
return text
|
| 61 |
|
| 62 |
# ---- Gradio UI ----
|
| 63 |
with gr.Blocks() as demo:
|
| 64 |
+
gr.Markdown("# 🛸 GPT-2 Open Instruct Playground\nThe original GPT-2 fine-tuned with Open Instruct v1.")
|
| 65 |
with gr.Row():
|
| 66 |
+
with gr.Column(scale=4):
|
| 67 |
+
instruction = gr.Textbox(label="Instruction", value="What is the capital city of France?", lines=6)
|
| 68 |
+
output_box = gr.Textbox(label="Model Output", lines=25)
|
| 69 |
+
with gr.Column(scale=1):
|
| 70 |
max_new_tokens = gr.Slider(50, 500, value=150, step=10, label="Max new tokens")
|
| 71 |
temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.05, label="Temperature")
|
| 72 |
top_k = gr.Slider(10, 100, value=50, step=5, label="Top-K sampling")
|
| 73 |
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P (nucleus) sampling")
|
| 74 |
generate_btn = gr.Button("Generate ✨")
|
|
|
|
|
|
|
| 75 |
generate_btn.click(generate_response, [instruction, max_new_tokens, temperature, top_k, top_p], output_box)
|
| 76 |
|
| 77 |
+
|
| 78 |
# ---- Launch ----
|
| 79 |
if __name__ == "__main__":
|
| 80 |
demo.launch()
|