Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,7 @@ import numpy as np
|
|
| 7 |
from PIL import Image
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
-
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL
|
| 11 |
from huggingface_hub import snapshot_download
|
| 12 |
|
| 13 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
@@ -18,7 +18,7 @@ model_path = snapshot_download(
|
|
| 18 |
repo_type="model",
|
| 19 |
ignore_patterns=["*.md", "*..gitattributes"],
|
| 20 |
local_dir="stable-diffusion-3-medium",
|
| 21 |
-
token=huggingface_token, #
|
| 22 |
)
|
| 23 |
|
| 24 |
DESCRIPTION = """# Stable Diffusion 3"""
|
|
@@ -34,7 +34,7 @@ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
| 34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 35 |
|
| 36 |
pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
| 37 |
-
|
| 38 |
|
| 39 |
def save_image(img):
|
| 40 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
@@ -50,7 +50,7 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 50 |
|
| 51 |
@spaces.GPU
|
| 52 |
def generate(
|
| 53 |
-
prompt:
|
| 54 |
negative_prompt: str = "",
|
| 55 |
use_negative_prompt: bool = False,
|
| 56 |
seed: int = 0,
|
|
@@ -67,10 +67,8 @@ def generate(
|
|
| 67 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 68 |
generator = torch.Generator().manual_seed(seed)
|
| 69 |
|
| 70 |
-
#pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
| 71 |
-
|
| 72 |
if not use_negative_prompt:
|
| 73 |
-
negative_prompt = None
|
| 74 |
|
| 75 |
output = pipe(
|
| 76 |
prompt=prompt,
|
|
@@ -81,7 +79,46 @@ def generate(
|
|
| 81 |
num_inference_steps=num_inference_steps,
|
| 82 |
generator=generator,
|
| 83 |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
| 84 |
-
output_type="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
).images
|
| 86 |
|
| 87 |
return output
|
|
@@ -109,7 +146,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 109 |
Stable Diffusion 3
|
| 110 |
</h1>
|
| 111 |
"""
|
| 112 |
-
|
| 113 |
gr.HTML(
|
| 114 |
"""
|
| 115 |
<h3 style='text-align: center'>
|
|
@@ -117,7 +154,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 117 |
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
|
| 118 |
</h3>
|
| 119 |
"""
|
| 120 |
-
|
| 121 |
with gr.Group():
|
| 122 |
with gr.Row():
|
| 123 |
prompt = gr.Text(
|
|
@@ -140,7 +177,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 140 |
)
|
| 141 |
seed = gr.Slider(
|
| 142 |
label="Seed",
|
| 143 |
-
|
| 144 |
maximum=MAX_SEED,
|
| 145 |
step=1,
|
| 146 |
value=0,
|
|
@@ -148,14 +185,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 148 |
|
| 149 |
steps = gr.Slider(
|
| 150 |
label="Steps",
|
| 151 |
-
|
| 152 |
maximum=60,
|
| 153 |
step=1,
|
| 154 |
value=25,
|
| 155 |
)
|
| 156 |
number_image = gr.Slider(
|
| 157 |
-
label="Number of
|
| 158 |
-
|
| 159 |
maximum=4,
|
| 160 |
step=1,
|
| 161 |
value=1,
|
|
@@ -164,14 +201,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 164 |
with gr.Row(visible=True):
|
| 165 |
width = gr.Slider(
|
| 166 |
label="Width",
|
| 167 |
-
|
| 168 |
maximum=MAX_IMAGE_SIZE,
|
| 169 |
step=32,
|
| 170 |
value=1024,
|
| 171 |
)
|
| 172 |
height = gr.Slider(
|
| 173 |
label="Height",
|
| 174 |
-
|
| 175 |
maximum=MAX_IMAGE_SIZE,
|
| 176 |
step=32,
|
| 177 |
value=1024,
|
|
@@ -179,12 +216,20 @@ with gr.Blocks(css=css) as demo:
|
|
| 179 |
with gr.Row():
|
| 180 |
guidance_scale = gr.Slider(
|
| 181 |
label="Guidance Scale",
|
| 182 |
-
|
| 183 |
maximum=10,
|
| 184 |
step=0.1,
|
| 185 |
value=7.0,
|
| 186 |
)
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
gr.Examples(
|
| 189 |
examples=examples,
|
| 190 |
inputs=prompt,
|
|
@@ -223,5 +268,28 @@ with gr.Blocks(css=css) as demo:
|
|
| 223 |
api_name="run",
|
| 224 |
)
|
| 225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
if __name__ == "__main__":
|
| 227 |
-
demo.queue().launch()
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
+
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL, AutoPipelineForImage2Image
|
| 11 |
from huggingface_hub import snapshot_download
|
| 12 |
|
| 13 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
| 18 |
repo_type="model",
|
| 19 |
ignore_patterns=["*.md", "*..gitattributes"],
|
| 20 |
local_dir="stable-diffusion-3-medium",
|
| 21 |
+
token=huggingface_token, # type a new token-id.
|
| 22 |
)
|
| 23 |
|
| 24 |
DESCRIPTION = """# Stable Diffusion 3"""
|
|
|
|
| 34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 35 |
|
| 36 |
pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
| 37 |
+
img2img_pipe = AutoPipelineForImage2Image.from_pretrained(model_path, torch_dtype=torch.float16)
|
| 38 |
|
| 39 |
def save_image(img):
|
| 40 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
|
| 50 |
|
| 51 |
@spaces.GPU
|
| 52 |
def generate(
|
| 53 |
+
prompt:str,
|
| 54 |
negative_prompt: str = "",
|
| 55 |
use_negative_prompt: bool = False,
|
| 56 |
seed: int = 0,
|
|
|
|
| 67 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 68 |
generator = torch.Generator().manual_seed(seed)
|
| 69 |
|
|
|
|
|
|
|
| 70 |
if not use_negative_prompt:
|
| 71 |
+
negative_prompt = None # type: ignore
|
| 72 |
|
| 73 |
output = pipe(
|
| 74 |
prompt=prompt,
|
|
|
|
| 79 |
num_inference_steps=num_inference_steps,
|
| 80 |
generator=generator,
|
| 81 |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
| 82 |
+
output_type="battery",
|
| 83 |
+
).images
|
| 84 |
+
|
| 85 |
+
return output
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@spaces.GPU
|
| 89 |
+
def img2img_generate(
|
| 90 |
+
prompt:str,
|
| 91 |
+
init_image: gr.Image,
|
| 92 |
+
negative_prompt: str = "",
|
| 93 |
+
use_negative_prompt: bool = False,
|
| 94 |
+
seed: int = 0,
|
| 95 |
+
guidance_scale: float = 7,
|
| 96 |
+
randomize_seed: bool = False,
|
| 97 |
+
num_inference_steps=30,
|
| 98 |
+
strength: float = 0.8,
|
| 99 |
+
NUM_IMAGES_PER_PROMPT=1,
|
| 100 |
+
use_resolution_binning: bool = True,
|
| 101 |
+
progress=gr.Progress(track_tqdm=True),
|
| 102 |
+
):
|
| 103 |
+
img2img_pipe.to(device)
|
| 104 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 105 |
+
generator = torch.Generator().manual_seed(seed)
|
| 106 |
+
|
| 107 |
+
if not use_negative_prompt:
|
| 108 |
+
negative_prompt = None # type: ignore
|
| 109 |
+
|
| 110 |
+
init_image = init_image.resize((768, 768))
|
| 111 |
+
|
| 112 |
+
output = img2img_pipe(
|
| 113 |
+
prompt=prompt,
|
| 114 |
+
image=init_image,
|
| 115 |
+
negative_prompt=negative_prompt,
|
| 116 |
+
guidance_scale=guidance_scale,
|
| 117 |
+
num_inference_steps=num_inference_steps,
|
| 118 |
+
generator=generator,
|
| 119 |
+
strength=strength,
|
| 120 |
+
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
| 121 |
+
output_type="battery",
|
| 122 |
).images
|
| 123 |
|
| 124 |
return output
|
|
|
|
| 146 |
Stable Diffusion 3
|
| 147 |
</h1>
|
| 148 |
"""
|
| 149 |
+
)
|
| 150 |
gr.HTML(
|
| 151 |
"""
|
| 152 |
<h3 style='text-align: center'>
|
|
|
|
| 154 |
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
|
| 155 |
</h3>
|
| 156 |
"""
|
| 157 |
+
)
|
| 158 |
with gr.Group():
|
| 159 |
with gr.Row():
|
| 160 |
prompt = gr.Text(
|
|
|
|
| 177 |
)
|
| 178 |
seed = gr.Slider(
|
| 179 |
label="Seed",
|
| 180 |
+
min=0,
|
| 181 |
maximum=MAX_SEED,
|
| 182 |
step=1,
|
| 183 |
value=0,
|
|
|
|
| 185 |
|
| 186 |
steps = gr.Slider(
|
| 187 |
label="Steps",
|
| 188 |
+
min=0,
|
| 189 |
maximum=60,
|
| 190 |
step=1,
|
| 191 |
value=25,
|
| 192 |
)
|
| 193 |
number_image = gr.Slider(
|
| 194 |
+
label="Number of Images",
|
| 195 |
+
min=1,
|
| 196 |
maximum=4,
|
| 197 |
step=1,
|
| 198 |
value=1,
|
|
|
|
| 201 |
with gr.Row(visible=True):
|
| 202 |
width = gr.Slider(
|
| 203 |
label="Width",
|
| 204 |
+
min=256,
|
| 205 |
maximum=MAX_IMAGE_SIZE,
|
| 206 |
step=32,
|
| 207 |
value=1024,
|
| 208 |
)
|
| 209 |
height = gr.Slider(
|
| 210 |
label="Height",
|
| 211 |
+
min=256,
|
| 212 |
maximum=MAX_IMAGE_SIZE,
|
| 213 |
step=32,
|
| 214 |
value=1024,
|
|
|
|
| 216 |
with gr.Row():
|
| 217 |
guidance_scale = gr.Slider(
|
| 218 |
label="Guidance Scale",
|
| 219 |
+
min=0.1,
|
| 220 |
maximum=10,
|
| 221 |
step=0.1,
|
| 222 |
value=7.0,
|
| 223 |
)
|
| 224 |
|
| 225 |
+
with gr.Group():
|
| 226 |
+
with gr.Row():
|
| 227 |
+
with gr.Column():
|
| 228 |
+
init_image = gr.Image(label="Input Image", type="pil", tool="sketch")
|
| 229 |
+
with gr.Column():
|
| 230 |
+
img2img_output = gr.Gallery(label="Output Images", show_label=False).style(grid=2)
|
| 231 |
+
strength = gr.Slider(label="Img2Img Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.8)
|
| 232 |
+
|
| 233 |
gr.Examples(
|
| 234 |
examples=examples,
|
| 235 |
inputs=prompt,
|
|
|
|
| 268 |
api_name="run",
|
| 269 |
)
|
| 270 |
|
| 271 |
+
gr.on(
|
| 272 |
+
triggers=[
|
| 273 |
+
prompt.submit,
|
| 274 |
+
negative_prompt.submit,
|
| 275 |
+
run_button.click,
|
| 276 |
+
],
|
| 277 |
+
fn=img2img_generate,
|
| 278 |
+
inputs=[
|
| 279 |
+
prompt,
|
| 280 |
+
init_image,
|
| 281 |
+
negative_prompt,
|
| 282 |
+
use_negative_prompt,
|
| 283 |
+
seed,
|
| 284 |
+
guidance_scale,
|
| 285 |
+
randomize_seed,
|
| 286 |
+
steps,
|
| 287 |
+
strength,
|
| 288 |
+
number_image,
|
| 289 |
+
],
|
| 290 |
+
outputs=[img2img_output],
|
| 291 |
+
api_name="img2img_run",
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
if __name__ == "__main__":
|
| 295 |
+
demo.queue().launch()
|