Commit
·
7239fe3
1
Parent(s):
c495666
fix: vLLM tool calling - enable by default with hermes parser
Browse files- Fix --enable-auto-tool-choice requires --tool-call-parser error
- Default TOOL_CALL_PARSER=hermes for Qwen models
- Default ENABLE_AUTO_TOOL_CHOICE=true
- Update Dockerfile.koyeb with vLLM backend
- Clean up deprecated files
- Update README with deployment options
- Dockerfile +3 -12
- Dockerfile.koyeb +2 -0
- KOYEB_VLLM_DEPLOYMENT.md +0 -93
- README.md +47 -124
- app/providers/transformers_provider.py +56 -166
- docs/STRUCTURED_OUTPUTS_COMPARISON.md +0 -132
- start-vllm.sh +20 -12
- start.sh +0 -10
Dockerfile
CHANGED
|
@@ -68,23 +68,14 @@ RUN test -f /app/app/providers/transformers_provider.py && \
|
|
| 68 |
grep -q "def initialize_model" /app/app/providers/transformers_provider.py || \
|
| 69 |
(echo "ERROR: transformers_provider.py not found or invalid!" && exit 1)
|
| 70 |
|
| 71 |
-
# Copy startup script
|
| 72 |
-
COPY start.sh /app/start.sh
|
| 73 |
-
|
| 74 |
# Create non-root user and cache directories in single layer
|
| 75 |
# Use ${HF_HOME} variable (defaults to /tmp/huggingface if not set)
|
| 76 |
RUN useradd -m -u 1000 user && \
|
| 77 |
mkdir -p ${HF_HOME:-/tmp/huggingface} /tmp/torch/inductor /tmp/triton && \
|
| 78 |
-
|
| 79 |
-
chown -R user:user /app ${HF_HOME:-/tmp/huggingface} /tmp/torch /tmp/triton && \
|
| 80 |
-
# Verify startup script is executable and has correct shebang
|
| 81 |
-
test -x /app/start.sh && head -1 /app/start.sh | grep -q "^#!/bin/bash" || (echo "ERROR: start.sh not executable or wrong shebang!" && exit 1)
|
| 82 |
|
| 83 |
USER user
|
| 84 |
|
| 85 |
-
|
| 86 |
-
# PORT environment variable controls which port the app actually uses
|
| 87 |
-
EXPOSE 7860 8000
|
| 88 |
|
| 89 |
-
|
| 90 |
-
CMD ["/app/start.sh"]
|
|
|
|
| 68 |
grep -q "def initialize_model" /app/app/providers/transformers_provider.py || \
|
| 69 |
(echo "ERROR: transformers_provider.py not found or invalid!" && exit 1)
|
| 70 |
|
|
|
|
|
|
|
|
|
|
| 71 |
# Create non-root user and cache directories in single layer
|
| 72 |
# Use ${HF_HOME} variable (defaults to /tmp/huggingface if not set)
|
| 73 |
RUN useradd -m -u 1000 user && \
|
| 74 |
mkdir -p ${HF_HOME:-/tmp/huggingface} /tmp/torch/inductor /tmp/triton && \
|
| 75 |
+
chown -R user:user /app ${HF_HOME:-/tmp/huggingface} /tmp/torch /tmp/triton
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
USER user
|
| 78 |
|
| 79 |
+
EXPOSE 7860
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
Dockerfile.koyeb
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
# Koyeb-optimized Dockerfile using official vLLM OpenAI image
|
|
|
|
| 2 |
# Uses ENTRYPOINT to ensure args aren't overridden by Koyeb
|
| 3 |
|
| 4 |
FROM vllm/vllm-openai:latest
|
|
@@ -19,3 +20,4 @@ EXPOSE 8000
|
|
| 19 |
|
| 20 |
# Use ENTRYPOINT so it can't be overridden by empty Koyeb args
|
| 21 |
ENTRYPOINT ["/start-vllm.sh"]
|
|
|
|
|
|
| 1 |
# Koyeb-optimized Dockerfile using official vLLM OpenAI image
|
| 2 |
+
# Compatible with Koyeb's one-click deployment patterns for Qwen + vLLM
|
| 3 |
# Uses ENTRYPOINT to ensure args aren't overridden by Koyeb
|
| 4 |
|
| 5 |
FROM vllm/vllm-openai:latest
|
|
|
|
| 20 |
|
| 21 |
# Use ENTRYPOINT so it can't be overridden by empty Koyeb args
|
| 22 |
ENTRYPOINT ["/start-vllm.sh"]
|
| 23 |
+
|
KOYEB_VLLM_DEPLOYMENT.md
DELETED
|
@@ -1,93 +0,0 @@
|
|
| 1 |
-
# Koyeb vLLM Deployment
|
| 2 |
-
|
| 3 |
-
## Overview
|
| 4 |
-
|
| 5 |
-
The Koyeb deployment uses **vLLM's native OpenAI-compatible API server** with full CUDA optimizations.
|
| 6 |
-
|
| 7 |
-
## Docker Image
|
| 8 |
-
|
| 9 |
-
**Public image on Docker Hub:**
|
| 10 |
-
```
|
| 11 |
-
jeanbapt/dragon-llm-inference:vllm-amd64
|
| 12 |
-
```
|
| 13 |
-
|
| 14 |
-
**Important:** Must be built with `--platform linux/amd64` for Koyeb GPU instances.
|
| 15 |
-
|
| 16 |
-
Built from `Dockerfile.koyeb` with:
|
| 17 |
-
- Base: `vllm/vllm-openai:latest`
|
| 18 |
-
- Custom startup script for env var configuration
|
| 19 |
-
- Flash Attention 2, PagedAttention, continuous batching
|
| 20 |
-
|
| 21 |
-
## Koyeb Configuration
|
| 22 |
-
|
| 23 |
-
### Environment Variables
|
| 24 |
-
|
| 25 |
-
| Variable | Value | Description |
|
| 26 |
-
|----------|-------|-------------|
|
| 27 |
-
| `HF_TOKEN_LC2` | (secret) | Hugging Face token for model access |
|
| 28 |
-
| `MODEL` | `DragonLLM/Qwen-Open-Finance-R-8B` | Model to load |
|
| 29 |
-
| `PORT` | `8000` | Server port |
|
| 30 |
-
| `MAX_MODEL_LEN` | `8192` | Max context length |
|
| 31 |
-
| `GPU_MEMORY_UTILIZATION` | `0.90` | GPU memory usage |
|
| 32 |
-
|
| 33 |
-
### Instance Type
|
| 34 |
-
|
| 35 |
-
- **Recommended**: `gpu-nvidia-l40s` (48GB VRAM) in Iowa (`dsm`)
|
| 36 |
-
- **Alternative**: `gpu-nvidia-rtx-4000-sff-ada` (20GB VRAM) in Frankfurt (`fra`)
|
| 37 |
-
|
| 38 |
-
### Health Check
|
| 39 |
-
|
| 40 |
-
- **Type**: TCP
|
| 41 |
-
- **Port**: 8000
|
| 42 |
-
- **Grace Period**: 900 seconds (15 minutes for model loading)
|
| 43 |
-
|
| 44 |
-
## API Endpoints (vLLM Native)
|
| 45 |
-
|
| 46 |
-
```
|
| 47 |
-
POST /v1/chat/completions - Chat completions (OpenAI compatible)
|
| 48 |
-
POST /v1/completions - Text completions
|
| 49 |
-
GET /v1/models - List models
|
| 50 |
-
GET /health - Health check
|
| 51 |
-
```
|
| 52 |
-
|
| 53 |
-
## Usage Example
|
| 54 |
-
|
| 55 |
-
```python
|
| 56 |
-
from openai import OpenAI
|
| 57 |
-
|
| 58 |
-
client = OpenAI(
|
| 59 |
-
base_url="https://dragon-llm-open-finance-inference.koyeb.app/v1",
|
| 60 |
-
api_key="not-needed"
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
response = client.chat.completions.create(
|
| 64 |
-
model="DragonLLM/Qwen-Open-Finance-R-8B",
|
| 65 |
-
messages=[
|
| 66 |
-
{"role": "user", "content": "Analyze the impact of rising interest rates"}
|
| 67 |
-
],
|
| 68 |
-
temperature=0.7,
|
| 69 |
-
max_tokens=1024
|
| 70 |
-
)
|
| 71 |
-
```
|
| 72 |
-
|
| 73 |
-
## Build & Push
|
| 74 |
-
|
| 75 |
-
```bash
|
| 76 |
-
# Build for linux/amd64 (required for Koyeb GPU)
|
| 77 |
-
docker buildx build --platform linux/amd64 \
|
| 78 |
-
-f Dockerfile.koyeb \
|
| 79 |
-
-t jeanbapt/dragon-llm-inference:vllm-amd64 \
|
| 80 |
-
--push .
|
| 81 |
-
```
|
| 82 |
-
|
| 83 |
-
## Troubleshooting
|
| 84 |
-
|
| 85 |
-
### "Application exited with code 8" with no logs
|
| 86 |
-
|
| 87 |
-
1. **Wrong architecture**: Ensure image is built for `linux/amd64`, not ARM
|
| 88 |
-
2. **GPU allocation failed**: Try different region or GPU type
|
| 89 |
-
3. **Container crash**: Check if `python3` is used (not `python`)
|
| 90 |
-
|
| 91 |
-
### Model download issues
|
| 92 |
-
|
| 93 |
-
Ensure `HF_TOKEN_LC2` is set with access to the model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -15,93 +15,38 @@ OpenAI-compatible API powered by DragonLLM/Qwen-Open-Finance-R-8B.
|
|
| 15 |
|
| 16 |
## Deployment Options
|
| 17 |
|
| 18 |
-
| Platform | Backend |
|
| 19 |
-
|
| 20 |
-
|
|
| 21 |
-
|
|
| 22 |
-
|
| 23 |
-
### Docker Hub Public Images
|
| 24 |
-
|
| 25 |
-
```
|
| 26 |
-
jeanbapt/dragon-llm-inference:vllm-amd64 # Koyeb - vLLM with CUDA optimizations (linux/amd64)
|
| 27 |
-
jeanbapt/dragon-llm-inference:latest # HF Spaces - Transformers backend
|
| 28 |
-
```
|
| 29 |
|
| 30 |
## Features
|
| 31 |
|
| 32 |
-
-
|
| 33 |
-
-
|
| 34 |
-
-
|
| 35 |
-
-
|
| 36 |
-
-
|
| 37 |
-
-
|
| 38 |
-
- **Tool calls support** - OpenAI-compatible tool/function calling
|
| 39 |
-
- **Structured outputs** - JSON format support via `response_format`
|
| 40 |
|
| 41 |
-
##
|
| 42 |
|
| 43 |
-
### Chat
|
| 44 |
```bash
|
| 45 |
curl -X POST "https://your-endpoint/v1/chat/completions" \
|
| 46 |
-H "Content-Type: application/json" \
|
| 47 |
-d '{
|
| 48 |
"model": "DragonLLM/Qwen-Open-Finance-R-8B",
|
| 49 |
"messages": [{"role": "user", "content": "What is compound interest?"}],
|
| 50 |
-
"temperature": 0.7,
|
| 51 |
"max_tokens": 500
|
| 52 |
}'
|
| 53 |
```
|
| 54 |
|
| 55 |
-
### List Models
|
| 56 |
-
```bash
|
| 57 |
-
curl -X GET "https://your-endpoint/v1/models"
|
| 58 |
-
```
|
| 59 |
-
|
| 60 |
-
### Streaming
|
| 61 |
-
```bash
|
| 62 |
-
curl -X POST "https://your-endpoint/v1/chat/completions" \
|
| 63 |
-
-H "Content-Type: application/json" \
|
| 64 |
-
-d '{
|
| 65 |
-
"model": "DragonLLM/Qwen-Open-Finance-R-8B",
|
| 66 |
-
"messages": [{"role": "user", "content": "Explain Value at Risk"}],
|
| 67 |
-
"stream": true
|
| 68 |
-
}'
|
| 69 |
-
```
|
| 70 |
-
|
| 71 |
-
### Health Check
|
| 72 |
-
```bash
|
| 73 |
-
curl -X GET "https://your-endpoint/health"
|
| 74 |
-
```
|
| 75 |
-
|
| 76 |
-
## Configuration
|
| 77 |
-
|
| 78 |
-
### Environment Variables
|
| 79 |
-
|
| 80 |
-
**Required:**
|
| 81 |
-
- `HF_TOKEN_LC2` - Hugging Face token with access to DragonLLM models
|
| 82 |
-
|
| 83 |
-
**Optional:**
|
| 84 |
-
- `MODEL` - Model name (default: `DragonLLM/Qwen-Open-Finance-R-8B`)
|
| 85 |
-
- `PORT` - Server port (default: 7860 for HF, 8000 for Koyeb)
|
| 86 |
-
- `SERVICE_API_KEY` - API key for authentication
|
| 87 |
-
- `LOG_LEVEL` - Logging level (default: `info`)
|
| 88 |
-
|
| 89 |
-
Token priority: `HF_TOKEN_LC2` > `HF_TOKEN_LC` > `HF_TOKEN` > `HUGGING_FACE_HUB_TOKEN`
|
| 90 |
-
|
| 91 |
-
**Note:** Accept model terms at https://huggingface.co/DragonLLM/Qwen-Open-Finance-R-8B before use.
|
| 92 |
-
|
| 93 |
-
## Integration
|
| 94 |
-
|
| 95 |
### OpenAI SDK
|
| 96 |
-
|
| 97 |
```python
|
| 98 |
from openai import OpenAI
|
| 99 |
|
| 100 |
-
client = OpenAI(
|
| 101 |
-
base_url="https://your-endpoint/v1",
|
| 102 |
-
api_key="not-needed" # or your SERVICE_API_KEY
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
response = client.chat.completions.create(
|
| 106 |
model="DragonLLM/Qwen-Open-Finance-R-8B",
|
| 107 |
messages=[{"role": "user", "content": "What is compound interest?"}],
|
|
@@ -109,86 +54,64 @@ response = client.chat.completions.create(
|
|
| 109 |
)
|
| 110 |
```
|
| 111 |
|
| 112 |
-
##
|
| 113 |
-
|
| 114 |
-
The Koyeb deployment uses vLLM's native OpenAI-compatible server with full CUDA optimizations:
|
| 115 |
|
| 116 |
-
|
| 117 |
-
- **PagedAttention** - Efficient GPU memory management
|
| 118 |
-
- **Continuous batching** - High throughput inference
|
| 119 |
-
- **Prefix caching** - Reuse KV cache for common prefixes
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
###
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
4. Select GPU instance (L40s recommended)
|
| 132 |
-
5. Set health check: `GET /health` on port 8000
|
| 133 |
|
| 134 |
-
##
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
-
|
| 139 |
-
|
|
|
|
| 140 |
|
| 141 |
-
|
| 142 |
-
- Transformers 4.45.0+
|
| 143 |
-
- PyTorch 2.5.0+ (CUDA 12.4)
|
| 144 |
|
| 145 |
-
|
| 146 |
-
- vLLM 0.6.0+
|
| 147 |
-
- Flash Attention 2
|
| 148 |
-
- CUDA 12.4
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
##
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
│ ├── routers/ # API routes
|
| 161 |
-
│ ├── providers/ # Model providers (Transformers)
|
| 162 |
-
│ ├── middleware/ # Rate limiting, auth
|
| 163 |
-
│ └── utils/ # Utilities, stats tracking
|
| 164 |
-
├── Dockerfile # HF Spaces (Transformers)
|
| 165 |
-
├── Dockerfile.koyeb # Koyeb (vLLM)
|
| 166 |
-
├── start.sh # HF Spaces startup
|
| 167 |
-
├── start-vllm.sh # Koyeb vLLM startup
|
| 168 |
-
├── docs/ # Technical documentation
|
| 169 |
-
└── tests/ # Test suite
|
| 170 |
-
```
|
| 171 |
|
| 172 |
## Development
|
| 173 |
|
| 174 |
-
### Local Setup
|
| 175 |
-
|
| 176 |
```bash
|
| 177 |
pip install -r requirements.txt
|
| 178 |
uvicorn app.main:app --reload --port 8080
|
| 179 |
```
|
| 180 |
|
| 181 |
### Testing
|
| 182 |
-
|
| 183 |
```bash
|
| 184 |
-
# Unit tests
|
| 185 |
pytest tests/ -v
|
| 186 |
-
|
| 187 |
-
# Integration tests
|
| 188 |
-
python tests/integration/test_space_basic.py
|
| 189 |
python tests/integration/test_tool_calls.py
|
| 190 |
```
|
| 191 |
|
| 192 |
## License
|
| 193 |
|
| 194 |
-
MIT License
|
|
|
|
| 15 |
|
| 16 |
## Deployment Options
|
| 17 |
|
| 18 |
+
| Platform | Backend | Dockerfile | Use Case |
|
| 19 |
+
|----------|---------|------------|----------|
|
| 20 |
+
| Hugging Face Spaces | Transformers | `Dockerfile` | Development, L4 GPU |
|
| 21 |
+
| Koyeb | vLLM | `Dockerfile.koyeb` | Production, L40s GPU |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
## Features
|
| 24 |
|
| 25 |
+
- OpenAI-compatible API
|
| 26 |
+
- Tool/function calling support
|
| 27 |
+
- Streaming responses
|
| 28 |
+
- French and English financial terminology
|
| 29 |
+
- Rate limiting (30 req/min, 500 req/hour)
|
| 30 |
+
- Statistics tracking via `/v1/stats`
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
## Quick Start
|
| 33 |
|
| 34 |
+
### Chat Completion
|
| 35 |
```bash
|
| 36 |
curl -X POST "https://your-endpoint/v1/chat/completions" \
|
| 37 |
-H "Content-Type: application/json" \
|
| 38 |
-d '{
|
| 39 |
"model": "DragonLLM/Qwen-Open-Finance-R-8B",
|
| 40 |
"messages": [{"role": "user", "content": "What is compound interest?"}],
|
|
|
|
| 41 |
"max_tokens": 500
|
| 42 |
}'
|
| 43 |
```
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
### OpenAI SDK
|
|
|
|
| 46 |
```python
|
| 47 |
from openai import OpenAI
|
| 48 |
|
| 49 |
+
client = OpenAI(base_url="https://your-endpoint/v1", api_key="not-needed")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
response = client.chat.completions.create(
|
| 51 |
model="DragonLLM/Qwen-Open-Finance-R-8B",
|
| 52 |
messages=[{"role": "user", "content": "What is compound interest?"}],
|
|
|
|
| 54 |
)
|
| 55 |
```
|
| 56 |
|
| 57 |
+
## Configuration
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
### Environment Variables
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
| Variable | Required | Default | Description |
|
| 62 |
+
|----------|----------|---------|-------------|
|
| 63 |
+
| `HF_TOKEN_LC2` | Yes | - | Hugging Face token |
|
| 64 |
+
| `MODEL` | No | `DragonLLM/Qwen-Open-Finance-R-8B` | Model name |
|
| 65 |
+
| `PORT` | No | `8000` (vLLM) / `7860` (Transformers) | Server port |
|
| 66 |
|
| 67 |
+
### vLLM-specific (Koyeb)
|
| 68 |
|
| 69 |
+
| Variable | Default | Description |
|
| 70 |
+
|----------|---------|-------------|
|
| 71 |
+
| `ENABLE_AUTO_TOOL_CHOICE` | `true` | Enable tool calling |
|
| 72 |
+
| `TOOL_CALL_PARSER` | `hermes` | Parser for Qwen models |
|
| 73 |
+
| `MAX_MODEL_LEN` | `8192` | Max context length |
|
| 74 |
+
| `GPU_MEMORY_UTILIZATION` | `0.90` | GPU memory fraction |
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
## Koyeb Deployment
|
| 77 |
|
| 78 |
+
Build and push the vLLM image:
|
| 79 |
+
```bash
|
| 80 |
+
docker build --platform linux/amd64 -f Dockerfile.koyeb -t your-registry/dragon-llm-inference:vllm-amd64 .
|
| 81 |
+
docker push your-registry/dragon-llm-inference:vllm-amd64
|
| 82 |
+
```
|
| 83 |
|
| 84 |
+
Recommended instance: `gpu-nvidia-l40s` (48GB VRAM)
|
|
|
|
|
|
|
| 85 |
|
| 86 |
+
## API Endpoints
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
| Endpoint | Method | Description |
|
| 89 |
+
|----------|--------|-------------|
|
| 90 |
+
| `/v1/models` | GET | List available models |
|
| 91 |
+
| `/v1/chat/completions` | POST | Chat completion |
|
| 92 |
+
| `/v1/stats` | GET | Usage statistics |
|
| 93 |
+
| `/health` | GET | Health check |
|
| 94 |
|
| 95 |
+
## Technical Specifications
|
| 96 |
|
| 97 |
+
- **Model**: DragonLLM/Qwen-Open-Finance-R-8B (8B parameters)
|
| 98 |
+
- **vLLM Backend**: vllm-openai:latest with hermes tool parser
|
| 99 |
+
- **Transformers Backend**: 4.45.0+ with PyTorch 2.5.0+ (CUDA 12.4)
|
| 100 |
+
- **Minimum VRAM**: 20GB (L4), recommended 48GB (L40s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
## Development
|
| 103 |
|
|
|
|
|
|
|
| 104 |
```bash
|
| 105 |
pip install -r requirements.txt
|
| 106 |
uvicorn app.main:app --reload --port 8080
|
| 107 |
```
|
| 108 |
|
| 109 |
### Testing
|
|
|
|
| 110 |
```bash
|
|
|
|
| 111 |
pytest tests/ -v
|
|
|
|
|
|
|
|
|
|
| 112 |
python tests/integration/test_tool_calls.py
|
| 113 |
```
|
| 114 |
|
| 115 |
## License
|
| 116 |
|
| 117 |
+
MIT License
|
app/providers/transformers_provider.py
CHANGED
|
@@ -183,7 +183,7 @@ class TransformersProvider:
|
|
| 183 |
pass
|
| 184 |
|
| 185 |
async def list_models(self) -> Dict[str, Any]:
|
| 186 |
-
"""List available models
|
| 187 |
return {
|
| 188 |
"object": "list",
|
| 189 |
"data": [
|
|
@@ -192,25 +192,9 @@ class TransformersProvider:
|
|
| 192 |
"object": "model",
|
| 193 |
"created": 1677610602,
|
| 194 |
"owned_by": "DragonLLM",
|
|
|
|
| 195 |
"root": MODEL_NAME,
|
| 196 |
"parent": None,
|
| 197 |
-
"max_model_len": 32768, # Qwen-3 8B base context window
|
| 198 |
-
"permission": [
|
| 199 |
-
{
|
| 200 |
-
"id": f"modelperm-{os.urandom(12).hex()}",
|
| 201 |
-
"object": "model_permission",
|
| 202 |
-
"created": 1677610602,
|
| 203 |
-
"allow_create_engine": False,
|
| 204 |
-
"allow_sampling": True,
|
| 205 |
-
"allow_logprobs": True,
|
| 206 |
-
"allow_search_indices": False,
|
| 207 |
-
"allow_view": True,
|
| 208 |
-
"allow_fine_tuning": False,
|
| 209 |
-
"organization": "*",
|
| 210 |
-
"group": None,
|
| 211 |
-
"is_blocking": False,
|
| 212 |
-
}
|
| 213 |
-
],
|
| 214 |
}
|
| 215 |
]
|
| 216 |
}
|
|
@@ -366,14 +350,11 @@ class TransformersProvider:
|
|
| 366 |
|
| 367 |
# Extract token counts using tokenizer for accuracy
|
| 368 |
# Count prompt tokens (more accurate than shape[1] as it handles special tokens correctly)
|
| 369 |
-
prompt_tokens = len(inputs
|
| 370 |
-
generated_ids = outputs[0][inputs
|
| 371 |
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 372 |
completion_tokens = len(generated_ids)
|
| 373 |
|
| 374 |
-
# ✅ Remove reasoning tags from all responses (Qwen reasoning models include these)
|
| 375 |
-
generated_text = self._remove_reasoning_tags(generated_text)
|
| 376 |
-
|
| 377 |
# ✅ If JSON output is required, try to extract JSON from the response
|
| 378 |
if json_output_required:
|
| 379 |
generated_text = self._extract_json_from_text(generated_text)
|
|
@@ -402,18 +383,10 @@ class TransformersProvider:
|
|
| 402 |
finish_reason=finish_reason,
|
| 403 |
))
|
| 404 |
|
| 405 |
-
# Build message with optional tool_calls
|
| 406 |
-
message = {
|
| 407 |
-
|
| 408 |
-
"
|
| 409 |
-
"refusal": None,
|
| 410 |
-
"annotations": None,
|
| 411 |
-
"audio": None,
|
| 412 |
-
"function_call": None,
|
| 413 |
-
"tool_calls": tool_calls if tool_calls else [],
|
| 414 |
-
"reasoning": None,
|
| 415 |
-
"reasoning_content": None,
|
| 416 |
-
}
|
| 417 |
|
| 418 |
return {
|
| 419 |
"id": f"chatcmpl-{os.urandom(12).hex()}",
|
|
@@ -424,23 +397,14 @@ class TransformersProvider:
|
|
| 424 |
{
|
| 425 |
"index": 0,
|
| 426 |
"message": message,
|
| 427 |
-
"logprobs": None,
|
| 428 |
"finish_reason": finish_reason,
|
| 429 |
-
"stop_reason": None,
|
| 430 |
-
"token_ids": None,
|
| 431 |
}
|
| 432 |
],
|
| 433 |
-
"service_tier": None,
|
| 434 |
-
"system_fingerprint": None,
|
| 435 |
"usage": {
|
| 436 |
"prompt_tokens": prompt_tokens,
|
| 437 |
-
"total_tokens": prompt_tokens + completion_tokens,
|
| 438 |
"completion_tokens": completion_tokens,
|
| 439 |
-
"
|
| 440 |
},
|
| 441 |
-
"prompt_logprobs": None,
|
| 442 |
-
"prompt_token_ids": None,
|
| 443 |
-
"kv_transfer_params": None,
|
| 444 |
}
|
| 445 |
|
| 446 |
async def _chat_stream(
|
|
@@ -451,7 +415,7 @@ class TransformersProvider:
|
|
| 451 |
created = int(time.time())
|
| 452 |
|
| 453 |
# Count prompt tokens
|
| 454 |
-
prompt_tokens = len(inputs
|
| 455 |
completion_tokens = 0
|
| 456 |
generated_text = ""
|
| 457 |
|
|
@@ -491,13 +455,9 @@ class TransformersProvider:
|
|
| 491 |
{
|
| 492 |
"index": 0,
|
| 493 |
"delta": {"content": token},
|
| 494 |
-
"logprobs": None,
|
| 495 |
"finish_reason": None,
|
| 496 |
-
"stop_reason": None,
|
| 497 |
}
|
| 498 |
],
|
| 499 |
-
"service_tier": None,
|
| 500 |
-
"system_fingerprint": None,
|
| 501 |
}
|
| 502 |
yield f"data: {json.dumps(chunk, ensure_ascii=False)}\n\n"
|
| 503 |
await asyncio.sleep(0)
|
|
@@ -523,23 +483,13 @@ class TransformersProvider:
|
|
| 523 |
finish_reason=finish_reason,
|
| 524 |
))
|
| 525 |
|
| 526 |
-
# Send final chunk
|
| 527 |
final_chunk = {
|
| 528 |
"id": completion_id,
|
| 529 |
"object": "chat.completion.chunk",
|
| 530 |
"created": created,
|
| 531 |
"model": model_id,
|
| 532 |
-
"choices": [
|
| 533 |
-
{
|
| 534 |
-
"index": 0,
|
| 535 |
-
"delta": {},
|
| 536 |
-
"logprobs": None,
|
| 537 |
-
"finish_reason": "stop",
|
| 538 |
-
"stop_reason": None,
|
| 539 |
-
}
|
| 540 |
-
],
|
| 541 |
-
"service_tier": None,
|
| 542 |
-
"system_fingerprint": None,
|
| 543 |
}
|
| 544 |
yield f"data: {json.dumps(final_chunk, ensure_ascii=False)}\n\n"
|
| 545 |
yield "data: [DONE]\n\n"
|
|
@@ -561,120 +511,60 @@ class TransformersProvider:
|
|
| 561 |
|
| 562 |
def _remove_reasoning_tags(self, text: str) -> str:
|
| 563 |
"""Remove Qwen reasoning tags from text."""
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
# Remove closed reasoning tags - matches <think>...</think>
|
| 567 |
cleaned_text = re.sub(
|
| 568 |
r'<think>.*?</think>',
|
| 569 |
'',
|
| 570 |
-
|
| 571 |
flags=re.DOTALL | re.IGNORECASE
|
| 572 |
)
|
| 573 |
|
| 574 |
-
# Handle unclosed reasoning tags
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
if last_closing != -1:
|
| 580 |
-
# Get everything after the closing tag
|
| 581 |
-
cleaned_text = cleaned_text[last_closing + len(closing_tag):].strip()
|
| 582 |
-
|
| 583 |
-
# If still has opening tag but no closing tag, remove everything up to and including the tag
|
| 584 |
-
opening_tag = "<think>"
|
| 585 |
-
opening_pos = cleaned_text.lower().find(opening_tag.lower())
|
| 586 |
-
if opening_pos != -1:
|
| 587 |
-
# Find the end of the opening tag
|
| 588 |
-
tag_end = cleaned_text.find(">", opening_pos)
|
| 589 |
-
if tag_end != -1:
|
| 590 |
-
# Get everything after the tag
|
| 591 |
-
after_tag = cleaned_text[tag_end + 1:].strip()
|
| 592 |
-
|
| 593 |
-
# The content after the tag is often still reasoning
|
| 594 |
-
# Look for patterns that indicate the start of the actual answer
|
| 595 |
-
# Strategy: Find the last sentence that doesn't contain reasoning indicators
|
| 596 |
-
|
| 597 |
-
# Split into sentences
|
| 598 |
-
sentences = re.split(r'([.!?]\s+)', after_tag)
|
| 599 |
-
# Recombine sentences with their punctuation
|
| 600 |
-
sentence_pairs = []
|
| 601 |
-
for i in range(0, len(sentences) - 1, 2):
|
| 602 |
-
if i + 1 < len(sentences):
|
| 603 |
-
sentence_pairs.append(sentences[i] + sentences[i + 1])
|
| 604 |
-
else:
|
| 605 |
-
sentence_pairs.append(sentences[i])
|
| 606 |
-
|
| 607 |
-
# Reasoning indicators - sentences starting with these are likely reasoning
|
| 608 |
-
reasoning_starters = [
|
| 609 |
-
'okay', 'let me', 'i need to', 'first', 'let\'s see', 'the user',
|
| 610 |
-
'i should', 'i must', 'i have to', 'let me check', 'i\'ll',
|
| 611 |
-
'i will', 'i can', 'i want to', 'i think', 'i believe'
|
| 612 |
-
]
|
| 613 |
-
|
| 614 |
-
# Find the last sentence that doesn't start with reasoning indicators
|
| 615 |
-
answer_sentence = None
|
| 616 |
-
for sentence in reversed(sentence_pairs):
|
| 617 |
-
sentence_clean = sentence.strip()
|
| 618 |
-
if len(sentence_clean) < 10: # Too short, skip
|
| 619 |
-
continue
|
| 620 |
-
# Check if sentence starts with reasoning indicators
|
| 621 |
-
first_words = ' '.join(sentence_clean.split()[:3]).lower()
|
| 622 |
-
if not any(starter in first_words for starter in reasoning_starters):
|
| 623 |
-
# This looks like an actual answer
|
| 624 |
-
answer_sentence = sentence_clean
|
| 625 |
-
break
|
| 626 |
-
|
| 627 |
-
if answer_sentence:
|
| 628 |
-
cleaned_text = answer_sentence
|
| 629 |
-
else:
|
| 630 |
-
# Fallback: remove the tag and take everything after, but clean it up
|
| 631 |
-
# Remove common reasoning phrases at the start
|
| 632 |
-
cleaned = after_tag
|
| 633 |
-
for phrase in reasoning_starters:
|
| 634 |
-
if cleaned.lower().startswith(phrase):
|
| 635 |
-
# Find the end of this phrase and take what comes after
|
| 636 |
-
words = cleaned.split()
|
| 637 |
-
# Skip first few words that match the phrase
|
| 638 |
-
for i, word in enumerate(words):
|
| 639 |
-
if phrase not in ' '.join(words[:i+1]).lower():
|
| 640 |
-
cleaned = ' '.join(words[i:])
|
| 641 |
-
break
|
| 642 |
-
cleaned_text = cleaned.strip()
|
| 643 |
|
| 644 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 645 |
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
return None
|
| 651 |
-
|
| 652 |
-
brace_count = 0
|
| 653 |
-
in_string = False
|
| 654 |
-
escape_next = False
|
| 655 |
-
for i in range(brace_start, len(text)):
|
| 656 |
-
if escape_next:
|
| 657 |
-
escape_next = False
|
| 658 |
-
continue
|
| 659 |
-
if text[i] == '\\':
|
| 660 |
-
escape_next = True
|
| 661 |
-
elif text[i] == '"' and not in_string:
|
| 662 |
-
in_string = True
|
| 663 |
-
elif text[i] == '"' and in_string:
|
| 664 |
-
in_string = False
|
| 665 |
-
elif text[i] == '{' and not in_string:
|
| 666 |
-
brace_count += 1
|
| 667 |
-
elif text[i] == '}' and not in_string:
|
| 668 |
-
brace_count -= 1
|
| 669 |
-
if brace_count == 0:
|
| 670 |
-
json_candidate = text[brace_start:i+1]
|
| 671 |
-
try:
|
| 672 |
-
json.loads(json_candidate)
|
| 673 |
-
return json_candidate
|
| 674 |
-
except json.JSONDecodeError:
|
| 675 |
-
return None
|
| 676 |
return None
|
| 677 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 678 |
def _format_tools_for_prompt(self, tools: List[Dict[str, Any]]) -> str:
|
| 679 |
"""Format tools for inclusion in system prompt."""
|
| 680 |
tools_text = (
|
|
|
|
| 183 |
pass
|
| 184 |
|
| 185 |
async def list_models(self) -> Dict[str, Any]:
|
| 186 |
+
"""List available models."""
|
| 187 |
return {
|
| 188 |
"object": "list",
|
| 189 |
"data": [
|
|
|
|
| 192 |
"object": "model",
|
| 193 |
"created": 1677610602,
|
| 194 |
"owned_by": "DragonLLM",
|
| 195 |
+
"permission": [],
|
| 196 |
"root": MODEL_NAME,
|
| 197 |
"parent": None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
}
|
| 199 |
]
|
| 200 |
}
|
|
|
|
| 350 |
|
| 351 |
# Extract token counts using tokenizer for accuracy
|
| 352 |
# Count prompt tokens (more accurate than shape[1] as it handles special tokens correctly)
|
| 353 |
+
prompt_tokens = len(inputs.input_ids[0])
|
| 354 |
+
generated_ids = outputs[0][inputs.input_ids.shape[1]:]
|
| 355 |
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 356 |
completion_tokens = len(generated_ids)
|
| 357 |
|
|
|
|
|
|
|
|
|
|
| 358 |
# ✅ If JSON output is required, try to extract JSON from the response
|
| 359 |
if json_output_required:
|
| 360 |
generated_text = self._extract_json_from_text(generated_text)
|
|
|
|
| 383 |
finish_reason=finish_reason,
|
| 384 |
))
|
| 385 |
|
| 386 |
+
# Build message with optional tool_calls
|
| 387 |
+
message = {"role": "assistant", "content": generated_text if generated_text.strip() else None}
|
| 388 |
+
if tool_calls:
|
| 389 |
+
message["tool_calls"] = tool_calls
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
return {
|
| 392 |
"id": f"chatcmpl-{os.urandom(12).hex()}",
|
|
|
|
| 397 |
{
|
| 398 |
"index": 0,
|
| 399 |
"message": message,
|
|
|
|
| 400 |
"finish_reason": finish_reason,
|
|
|
|
|
|
|
| 401 |
}
|
| 402 |
],
|
|
|
|
|
|
|
| 403 |
"usage": {
|
| 404 |
"prompt_tokens": prompt_tokens,
|
|
|
|
| 405 |
"completion_tokens": completion_tokens,
|
| 406 |
+
"total_tokens": prompt_tokens + completion_tokens,
|
| 407 |
},
|
|
|
|
|
|
|
|
|
|
| 408 |
}
|
| 409 |
|
| 410 |
async def _chat_stream(
|
|
|
|
| 415 |
created = int(time.time())
|
| 416 |
|
| 417 |
# Count prompt tokens
|
| 418 |
+
prompt_tokens = len(inputs.input_ids[0])
|
| 419 |
completion_tokens = 0
|
| 420 |
generated_text = ""
|
| 421 |
|
|
|
|
| 455 |
{
|
| 456 |
"index": 0,
|
| 457 |
"delta": {"content": token},
|
|
|
|
| 458 |
"finish_reason": None,
|
|
|
|
| 459 |
}
|
| 460 |
],
|
|
|
|
|
|
|
| 461 |
}
|
| 462 |
yield f"data: {json.dumps(chunk, ensure_ascii=False)}\n\n"
|
| 463 |
await asyncio.sleep(0)
|
|
|
|
| 483 |
finish_reason=finish_reason,
|
| 484 |
))
|
| 485 |
|
| 486 |
+
# Send final chunk
|
| 487 |
final_chunk = {
|
| 488 |
"id": completion_id,
|
| 489 |
"object": "chat.completion.chunk",
|
| 490 |
"created": created,
|
| 491 |
"model": model_id,
|
| 492 |
+
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
}
|
| 494 |
yield f"data: {json.dumps(final_chunk, ensure_ascii=False)}\n\n"
|
| 495 |
yield "data: [DONE]\n\n"
|
|
|
|
| 511 |
|
| 512 |
def _remove_reasoning_tags(self, text: str) -> str:
|
| 513 |
"""Remove Qwen reasoning tags from text."""
|
| 514 |
+
# Remove reasoning tags - matches <think>...</think>
|
|
|
|
|
|
|
| 515 |
cleaned_text = re.sub(
|
| 516 |
r'<think>.*?</think>',
|
| 517 |
'',
|
| 518 |
+
text,
|
| 519 |
flags=re.DOTALL | re.IGNORECASE
|
| 520 |
)
|
| 521 |
|
| 522 |
+
# Handle unclosed reasoning tags (split on closing tag)
|
| 523 |
+
if "</think>" in cleaned_text:
|
| 524 |
+
parts = cleaned_text.split("</think>", 1)
|
| 525 |
+
if len(parts) > 1:
|
| 526 |
+
cleaned_text = parts[1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 527 |
|
| 528 |
+
# If still has opening tag but no closing, remove everything before first {
|
| 529 |
+
if "<think>" in cleaned_text.lower() and "{" in cleaned_text:
|
| 530 |
+
brace_pos = cleaned_text.find('{')
|
| 531 |
+
if brace_pos != -1:
|
| 532 |
+
cleaned_text = cleaned_text[brace_pos:]
|
| 533 |
+
|
| 534 |
+
return cleaned_text
|
| 535 |
|
| 536 |
+
def _extract_json_by_brace_matching(self, text: str, start_pos: int = 0) -> Optional[str]:
|
| 537 |
+
"""Extract JSON object by matching braces starting at given position."""
|
| 538 |
+
brace_start = text.find('{', start_pos)
|
| 539 |
+
if brace_start == -1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
return None
|
| 541 |
|
| 542 |
+
brace_count = 0
|
| 543 |
+
in_string = False
|
| 544 |
+
escape_next = False
|
| 545 |
+
for i in range(brace_start, len(text)):
|
| 546 |
+
if escape_next:
|
| 547 |
+
escape_next = False
|
| 548 |
+
continue
|
| 549 |
+
if text[i] == '\\':
|
| 550 |
+
escape_next = True
|
| 551 |
+
elif text[i] == '"' and not in_string:
|
| 552 |
+
in_string = True
|
| 553 |
+
elif text[i] == '"' and in_string:
|
| 554 |
+
in_string = False
|
| 555 |
+
elif text[i] == '{' and not in_string:
|
| 556 |
+
brace_count += 1
|
| 557 |
+
elif text[i] == '}' and not in_string:
|
| 558 |
+
brace_count -= 1
|
| 559 |
+
if brace_count == 0:
|
| 560 |
+
json_candidate = text[brace_start:i+1]
|
| 561 |
+
try:
|
| 562 |
+
json.loads(json_candidate)
|
| 563 |
+
return json_candidate
|
| 564 |
+
except json.JSONDecodeError:
|
| 565 |
+
return None
|
| 566 |
+
return None
|
| 567 |
+
|
| 568 |
def _format_tools_for_prompt(self, tools: List[Dict[str, Any]]) -> str:
|
| 569 |
"""Format tools for inclusion in system prompt."""
|
| 570 |
tools_text = (
|
docs/STRUCTURED_OUTPUTS_COMPARISON.md
DELETED
|
@@ -1,132 +0,0 @@
|
|
| 1 |
-
# Structured Outputs: vLLM vs PydanticAI Comparison
|
| 2 |
-
|
| 3 |
-
## Overview
|
| 4 |
-
|
| 5 |
-
This document compares how vLLM and PydanticAI handle structured outputs, and why they may not be fully compatible.
|
| 6 |
-
|
| 7 |
-
## vLLM Structured Outputs
|
| 8 |
-
|
| 9 |
-
### Method
|
| 10 |
-
vLLM uses **`extra_body`** parameter with `structured_outputs` key (NOT standard OpenAI `response_format`):
|
| 11 |
-
|
| 12 |
-
```python
|
| 13 |
-
completion = client.chat.completions.create(
|
| 14 |
-
model="DragonLLM/Qwen-Open-Finance-R-8B",
|
| 15 |
-
messages=[{"role": "user", "content": "Generate JSON..."}],
|
| 16 |
-
extra_body={
|
| 17 |
-
"structured_outputs": {
|
| 18 |
-
"json": json_schema # Pydantic model.model_json_schema()
|
| 19 |
-
}
|
| 20 |
-
}
|
| 21 |
-
)
|
| 22 |
-
```
|
| 23 |
-
|
| 24 |
-
### Supported Formats
|
| 25 |
-
1. **JSON Schema**: `{"json": json_schema}`
|
| 26 |
-
2. **Regex**: `{"regex": r"pattern"}`
|
| 27 |
-
3. **Choice**: `{"choice": ["option1", "option2"]}`
|
| 28 |
-
4. **Grammar**: `{"grammar": "CFG definition"}`
|
| 29 |
-
|
| 30 |
-
### Response Format
|
| 31 |
-
- Returns JSON string in `message.content`
|
| 32 |
-
- No tool calls involved
|
| 33 |
-
- Direct JSON in content field
|
| 34 |
-
|
| 35 |
-
## PydanticAI Structured Outputs
|
| 36 |
-
|
| 37 |
-
### Method
|
| 38 |
-
PydanticAI uses **tool calling** with `tool_choice="required"`:
|
| 39 |
-
|
| 40 |
-
```python
|
| 41 |
-
agent = Agent(model, system_prompt="...")
|
| 42 |
-
result = await agent.run(prompt, output_type=Portfolio)
|
| 43 |
-
```
|
| 44 |
-
|
| 45 |
-
### How It Works
|
| 46 |
-
1. PydanticAI converts `output_type` (Pydantic model) to a tool definition
|
| 47 |
-
2. Sends request with:
|
| 48 |
-
- `tools`: [function definition matching the schema]
|
| 49 |
-
- `tool_choice`: `"required"` (forces tool call)
|
| 50 |
-
3. Expects response with `tool_calls` array
|
| 51 |
-
4. Extracts JSON from `tool_calls[0].function.arguments`
|
| 52 |
-
|
| 53 |
-
### Expected Response Format
|
| 54 |
-
```json
|
| 55 |
-
{
|
| 56 |
-
"choices": [{
|
| 57 |
-
"message": {
|
| 58 |
-
"tool_calls": [{
|
| 59 |
-
"function": {
|
| 60 |
-
"name": "...",
|
| 61 |
-
"arguments": "{\"field\": \"value\"}" // JSON string
|
| 62 |
-
}
|
| 63 |
-
}]
|
| 64 |
-
}
|
| 65 |
-
}]
|
| 66 |
-
}
|
| 67 |
-
```
|
| 68 |
-
|
| 69 |
-
## Compatibility Issue
|
| 70 |
-
|
| 71 |
-
### Problem
|
| 72 |
-
- **vLLM**: Uses `extra_body.structured_outputs` → Returns JSON in `message.content`
|
| 73 |
-
- **PydanticAI**: Uses `tools` + `tool_choice="required"` → Expects JSON in `tool_calls[].function.arguments`
|
| 74 |
-
|
| 75 |
-
### Current Status
|
| 76 |
-
- ✅ **HF Space**: Works because it implements tool calling support
|
| 77 |
-
- ❌ **vLLM**: Fails because vLLM's structured outputs return JSON in `content`, not `tool_calls`
|
| 78 |
-
|
| 79 |
-
## Solutions
|
| 80 |
-
|
| 81 |
-
### Option 1: Use vLLM's `extra_body` (Recommended)
|
| 82 |
-
Modify PydanticAI's OpenAI provider to detect vLLM and use `extra_body` instead of tools:
|
| 83 |
-
|
| 84 |
-
```python
|
| 85 |
-
# In PydanticAI OpenAI provider
|
| 86 |
-
if output_type:
|
| 87 |
-
json_schema = output_type.model_json_schema()
|
| 88 |
-
# Use vLLM structured_outputs instead of tools
|
| 89 |
-
extra_body = {
|
| 90 |
-
"structured_outputs": {"json": json_schema}
|
| 91 |
-
}
|
| 92 |
-
```
|
| 93 |
-
|
| 94 |
-
### Option 2: Add Tool Call Support to vLLM Response
|
| 95 |
-
When vLLM receives `tools` + `tool_choice="required"`, wrap the structured output in a tool call format.
|
| 96 |
-
|
| 97 |
-
### Option 3: Use `response_format` (Limited)
|
| 98 |
-
Standard OpenAI `response_format={"type": "json_object"}` works but:
|
| 99 |
-
- Only enforces JSON, not schema validation
|
| 100 |
-
- PydanticAI would need to parse and validate manually
|
| 101 |
-
- Less reliable than schema-based approaches
|
| 102 |
-
|
| 103 |
-
## Current Implementation Status
|
| 104 |
-
|
| 105 |
-
### HF Space (Transformers)
|
| 106 |
-
- ✅ Supports tool calling (text-based parsing)
|
| 107 |
-
- ✅ Supports `response_format`
|
| 108 |
-
- ✅ Works with PydanticAI's tool-based approach
|
| 109 |
-
|
| 110 |
-
### vLLM
|
| 111 |
-
- ✅ Supports `extra_body.structured_outputs` (JSON schema)
|
| 112 |
-
- ❌ Does NOT support tool calling for structured outputs
|
| 113 |
-
- ✅ Supports `response_format` (basic JSON mode only)
|
| 114 |
-
|
| 115 |
-
## Recommendation
|
| 116 |
-
|
| 117 |
-
For full compatibility with PydanticAI, we need to:
|
| 118 |
-
|
| 119 |
-
1. **Detect vLLM endpoint** in PydanticAI provider
|
| 120 |
-
2. **Use `extra_body.structured_outputs`** instead of tools when using vLLM
|
| 121 |
-
3. **Parse `message.content`** instead of `tool_calls` for vLLM responses
|
| 122 |
-
|
| 123 |
-
Alternatively, implement a middleware in the HF Space API that:
|
| 124 |
-
- Detects `tools` + `tool_choice="required"` requests
|
| 125 |
-
- Converts to `extra_body.structured_outputs` for vLLM
|
| 126 |
-
- Wraps response in tool call format for PydanticAI compatibility
|
| 127 |
-
|
| 128 |
-
## References
|
| 129 |
-
|
| 130 |
-
- [vLLM Structured Outputs Docs](https://docs.vllm.ai/en/stable/features/structured_outputs/)
|
| 131 |
-
- [PydanticAI Documentation](https://ai.pydantic.dev/)
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start-vllm.sh
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
#!/bin/bash
|
| 2 |
# vLLM OpenAI-compatible API server startup script
|
| 3 |
-
#
|
|
|
|
| 4 |
|
| 5 |
set -e
|
| 6 |
|
|
@@ -10,6 +11,7 @@ PORT="${PORT:-8000}"
|
|
| 10 |
MAX_MODEL_LEN="${MAX_MODEL_LEN:-8192}"
|
| 11 |
GPU_MEMORY_UTILIZATION="${GPU_MEMORY_UTILIZATION:-0.90}"
|
| 12 |
DTYPE="${DTYPE:-bfloat16}"
|
|
|
|
| 13 |
|
| 14 |
# HF Token - HF_TOKEN_LC2 is the model access token (priority)
|
| 15 |
export HF_TOKEN="${HF_TOKEN_LC2:-${HF_TOKEN:-${HUGGING_FACE_HUB_TOKEN:-}}}"
|
|
@@ -22,31 +24,37 @@ echo "Model: $MODEL"
|
|
| 22 |
echo "Port: $PORT"
|
| 23 |
echo "Max Model Len: $MAX_MODEL_LEN"
|
| 24 |
echo "GPU Memory Utilization: $GPU_MEMORY_UTILIZATION"
|
|
|
|
| 25 |
echo "HF Token: ${HF_TOKEN:+set (${#HF_TOKEN} chars)}"
|
| 26 |
echo "=========================================="
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
# Enable tool calling support for OpenAI-compatible API
|
| 30 |
-
# For Qwen3 models, valid parsers are: qwen3_coder, qwen3_xml
|
| 31 |
-
# If TOOL_CALL_PARSER is not set, use --enable-auto-tool-choice only
|
| 32 |
VLLM_ARGS=(
|
| 33 |
--model "$MODEL"
|
| 34 |
--trust-remote-code
|
| 35 |
--dtype "$DTYPE"
|
| 36 |
--max-model-len "$MAX_MODEL_LEN"
|
| 37 |
--gpu-memory-utilization "$GPU_MEMORY_UTILIZATION"
|
|
|
|
| 38 |
--port "$PORT"
|
| 39 |
--host 0.0.0.0
|
| 40 |
-
--enable-auto-tool-choice
|
| 41 |
)
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
else
|
| 49 |
-
echo "Tool Calling:
|
| 50 |
fi
|
| 51 |
|
|
|
|
|
|
|
|
|
|
| 52 |
exec python3 -m vllm.entrypoints.openai.api_server "${VLLM_ARGS[@]}"
|
|
|
|
| 1 |
#!/bin/bash
|
| 2 |
# vLLM OpenAI-compatible API server startup script
|
| 3 |
+
# Compatible with Koyeb GPU deployment patterns
|
| 4 |
+
# Based on Koyeb's one-click vLLM + Qwen deployment templates
|
| 5 |
|
| 6 |
set -e
|
| 7 |
|
|
|
|
| 11 |
MAX_MODEL_LEN="${MAX_MODEL_LEN:-8192}"
|
| 12 |
GPU_MEMORY_UTILIZATION="${GPU_MEMORY_UTILIZATION:-0.90}"
|
| 13 |
DTYPE="${DTYPE:-bfloat16}"
|
| 14 |
+
TENSOR_PARALLEL_SIZE="${TENSOR_PARALLEL_SIZE:-${KOYEB_GPU_COUNT:-1}}"
|
| 15 |
|
| 16 |
# HF Token - HF_TOKEN_LC2 is the model access token (priority)
|
| 17 |
export HF_TOKEN="${HF_TOKEN_LC2:-${HF_TOKEN:-${HUGGING_FACE_HUB_TOKEN:-}}}"
|
|
|
|
| 24 |
echo "Port: $PORT"
|
| 25 |
echo "Max Model Len: $MAX_MODEL_LEN"
|
| 26 |
echo "GPU Memory Utilization: $GPU_MEMORY_UTILIZATION"
|
| 27 |
+
echo "Tensor Parallel Size: $TENSOR_PARALLEL_SIZE"
|
| 28 |
echo "HF Token: ${HF_TOKEN:+set (${#HF_TOKEN} chars)}"
|
| 29 |
echo "=========================================="
|
| 30 |
|
| 31 |
+
# Build vLLM arguments
|
|
|
|
|
|
|
|
|
|
| 32 |
VLLM_ARGS=(
|
| 33 |
--model "$MODEL"
|
| 34 |
--trust-remote-code
|
| 35 |
--dtype "$DTYPE"
|
| 36 |
--max-model-len "$MAX_MODEL_LEN"
|
| 37 |
--gpu-memory-utilization "$GPU_MEMORY_UTILIZATION"
|
| 38 |
+
--tensor-parallel-size "$TENSOR_PARALLEL_SIZE"
|
| 39 |
--port "$PORT"
|
| 40 |
--host 0.0.0.0
|
|
|
|
| 41 |
)
|
| 42 |
|
| 43 |
+
# Tool Calling Support
|
| 44 |
+
# ENABLED BY DEFAULT for Qwen models (using hermes parser)
|
| 45 |
+
# Set ENABLE_AUTO_TOOL_CHOICE=false to disable
|
| 46 |
+
# For Qwen models, the default parser is 'hermes'
|
| 47 |
+
ENABLE_AUTO_TOOL_CHOICE="${ENABLE_AUTO_TOOL_CHOICE:-true}"
|
| 48 |
+
TOOL_CALL_PARSER="${TOOL_CALL_PARSER:-hermes}"
|
| 49 |
+
|
| 50 |
+
if [ "${ENABLE_AUTO_TOOL_CHOICE}" = "true" ]; then
|
| 51 |
+
VLLM_ARGS+=(--enable-auto-tool-choice --tool-call-parser "$TOOL_CALL_PARSER")
|
| 52 |
+
echo "Tool Calling: ENABLED (parser: $TOOL_CALL_PARSER)"
|
| 53 |
else
|
| 54 |
+
echo "Tool Calling: DISABLED"
|
| 55 |
fi
|
| 56 |
|
| 57 |
+
echo "=========================================="
|
| 58 |
+
|
| 59 |
+
# Execute vLLM server
|
| 60 |
exec python3 -m vllm.entrypoints.openai.api_server "${VLLM_ARGS[@]}"
|
start.sh
DELETED
|
@@ -1,10 +0,0 @@
|
|
| 1 |
-
#!/bin/bash
|
| 2 |
-
# Get port from environment variable, default to 7860
|
| 3 |
-
PORT=${PORT:-7860}
|
| 4 |
-
|
| 5 |
-
# Redirect all output to stderr so it shows in logs
|
| 6 |
-
exec >&2
|
| 7 |
-
|
| 8 |
-
# Start uvicorn with the specified port
|
| 9 |
-
exec python -m uvicorn app.main:app --host 0.0.0.0 --port "$PORT"
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|