Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -299,6 +299,20 @@ app.layout = dbc.Container([
|
|
| 299 |
html.P("This tool provides valuable keyword insights for SEO and digital marketing professionals. Enter a list of keywords and get insights into Keyword Intent, NLP Entities extracted via NER (Named Entity Recognition), & Topics. I created KeyIntentNER-T as an example of how to use more modern NLP methods to gain insights into shorter text strings (keywords) and how this information may be understood by search engines using similar techniques.", className="card-text"),
|
| 300 |
])
|
| 301 |
], className="mb-4 shadow-sm"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
dbc.Row([
|
| 303 |
dbc.Col([
|
| 304 |
dbc.Card([
|
|
@@ -310,6 +324,13 @@ app.layout = dbc.Container([
|
|
| 310 |
dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Topics are determined by matching keywords to topics from Google's well-known Content and Product taxonomies."]),
|
| 311 |
dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Since this tool is doing a lot behind the scenes, keyword processing can take anywhere from 30 seconds up to ~2 minutes."]),
|
| 312 |
], flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
])
|
| 314 |
], className="mb-4 shadow-sm")
|
| 315 |
], md=6),
|
|
|
|
| 299 |
html.P("This tool provides valuable keyword insights for SEO and digital marketing professionals. Enter a list of keywords and get insights into Keyword Intent, NLP Entities extracted via NER (Named Entity Recognition), & Topics. I created KeyIntentNER-T as an example of how to use more modern NLP methods to gain insights into shorter text strings (keywords) and how this information may be understood by search engines using similar techniques.", className="card-text"),
|
| 300 |
])
|
| 301 |
], className="mb-4 shadow-sm"),
|
| 302 |
+
# New Usage Instructions Section
|
| 303 |
+
dbc.Card([
|
| 304 |
+
dbc.CardBody([
|
| 305 |
+
html.H3([html.I(className="fas fa-user-cog mr-2"), "Usage Instructions"], className="card-title text-primary"),
|
| 306 |
+
dbc.ListGroup([
|
| 307 |
+
dbc.ListGroupItem([html.I(className="fas fa-1 mr-2"), "Enter your keywords: Paste your list of keywords into the text area, one per line."]),
|
| 308 |
+
dbc.ListGroupItem([html.I(className="fas fa-2 mr-2"), "Click 'Process Keywords': This will start the analysis."]),
|
| 309 |
+
dbc.ListGroupItem([html.I(className="fas fa-3 mr-2"), "Wait for processing: This can take 30 seconds to 2 minutes depending on the number of keywords."]),
|
| 310 |
+
dbc.ListGroupItem([html.I(className="fas fa-4 mr-2"), "View results: The tool will display Keyword Intent, NLP Entities, and Topics for each keyword."]),
|
| 311 |
+
dbc.ListGroupItem([html.I(className="fas fa-5 mr-2"), "Export data: Use the 'Export to CSV' button to download your results."]),
|
| 312 |
+
], flush=True)
|
| 313 |
+
])
|
| 314 |
+
], className="mb-4 shadow-sm"),
|
| 315 |
+
|
| 316 |
dbc.Row([
|
| 317 |
dbc.Col([
|
| 318 |
dbc.Card([
|
|
|
|
| 324 |
dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Topics are determined by matching keywords to topics from Google's well-known Content and Product taxonomies."]),
|
| 325 |
dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Since this tool is doing a lot behind the scenes, keyword processing can take anywhere from 30 seconds up to ~2 minutes."]),
|
| 326 |
], flush=True)
|
| 327 |
+
html.P([
|
| 328 |
+
"For detailed instructions and more information, please refer to the ",
|
| 329 |
+
html.A("README file", href="https://github.com/yourusername/yourrepository/blob/main/README.md", target="_blank"),
|
| 330 |
+
"."
|
| 331 |
+
], className="mt-3")
|
| 332 |
+
])
|
| 333 |
+
], className="mb-4 shadow-sm"),
|
| 334 |
])
|
| 335 |
], className="mb-4 shadow-sm")
|
| 336 |
], md=6),
|