j-higgins commited on
Commit
b9b4791
·
verified ·
1 Parent(s): 86d9cb6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -0
app.py CHANGED
@@ -299,6 +299,20 @@ app.layout = dbc.Container([
299
  html.P("This tool provides valuable keyword insights for SEO and digital marketing professionals. Enter a list of keywords and get insights into Keyword Intent, NLP Entities extracted via NER (Named Entity Recognition), & Topics. I created KeyIntentNER-T as an example of how to use more modern NLP methods to gain insights into shorter text strings (keywords) and how this information may be understood by search engines using similar techniques.", className="card-text"),
300
  ])
301
  ], className="mb-4 shadow-sm"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
  dbc.Row([
303
  dbc.Col([
304
  dbc.Card([
@@ -310,6 +324,13 @@ app.layout = dbc.Container([
310
  dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Topics are determined by matching keywords to topics from Google's well-known Content and Product taxonomies."]),
311
  dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Since this tool is doing a lot behind the scenes, keyword processing can take anywhere from 30 seconds up to ~2 minutes."]),
312
  ], flush=True)
 
 
 
 
 
 
 
313
  ])
314
  ], className="mb-4 shadow-sm")
315
  ], md=6),
 
299
  html.P("This tool provides valuable keyword insights for SEO and digital marketing professionals. Enter a list of keywords and get insights into Keyword Intent, NLP Entities extracted via NER (Named Entity Recognition), & Topics. I created KeyIntentNER-T as an example of how to use more modern NLP methods to gain insights into shorter text strings (keywords) and how this information may be understood by search engines using similar techniques.", className="card-text"),
300
  ])
301
  ], className="mb-4 shadow-sm"),
302
+ # New Usage Instructions Section
303
+ dbc.Card([
304
+ dbc.CardBody([
305
+ html.H3([html.I(className="fas fa-user-cog mr-2"), "Usage Instructions"], className="card-title text-primary"),
306
+ dbc.ListGroup([
307
+ dbc.ListGroupItem([html.I(className="fas fa-1 mr-2"), "Enter your keywords: Paste your list of keywords into the text area, one per line."]),
308
+ dbc.ListGroupItem([html.I(className="fas fa-2 mr-2"), "Click 'Process Keywords': This will start the analysis."]),
309
+ dbc.ListGroupItem([html.I(className="fas fa-3 mr-2"), "Wait for processing: This can take 30 seconds to 2 minutes depending on the number of keywords."]),
310
+ dbc.ListGroupItem([html.I(className="fas fa-4 mr-2"), "View results: The tool will display Keyword Intent, NLP Entities, and Topics for each keyword."]),
311
+ dbc.ListGroupItem([html.I(className="fas fa-5 mr-2"), "Export data: Use the 'Export to CSV' button to download your results."]),
312
+ ], flush=True)
313
+ ])
314
+ ], className="mb-4 shadow-sm"),
315
+
316
  dbc.Row([
317
  dbc.Col([
318
  dbc.Card([
 
324
  dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Topics are determined by matching keywords to topics from Google's well-known Content and Product taxonomies."]),
325
  dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Since this tool is doing a lot behind the scenes, keyword processing can take anywhere from 30 seconds up to ~2 minutes."]),
326
  ], flush=True)
327
+ html.P([
328
+ "For detailed instructions and more information, please refer to the ",
329
+ html.A("README file", href="https://github.com/yourusername/yourrepository/blob/main/README.md", target="_blank"),
330
+ "."
331
+ ], className="mt-3")
332
+ ])
333
+ ], className="mb-4 shadow-sm"),
334
  ])
335
  ], className="mb-4 shadow-sm")
336
  ], md=6),