Spaces:
Runtime error
Runtime error
update
Browse files- examples/silerovad/vad.py +129 -0
- main.py +9 -9
- requirements.txt +2 -0
examples/silerovad/vad.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
https://pytorch.org/hub/snakers4_silero-vad_vad/
|
| 5 |
+
https://github.com/snakers4/silero-vad
|
| 6 |
+
"""
|
| 7 |
+
import argparse
|
| 8 |
+
|
| 9 |
+
from scipy.io import wavfile
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
from project_settings import project_path
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_args():
|
| 16 |
+
parser = argparse.ArgumentParser()
|
| 17 |
+
parser.add_argument(
|
| 18 |
+
"--wav_file",
|
| 19 |
+
default=(project_path / "data/early_media/3300999628164249998.wav").as_posix(),
|
| 20 |
+
type=str,
|
| 21 |
+
)
|
| 22 |
+
parser.add_argument(
|
| 23 |
+
"--model_name",
|
| 24 |
+
default=(project_path / "pretrained_models/silero_vad/silero_vad.jit").as_posix(),
|
| 25 |
+
type=str,
|
| 26 |
+
)
|
| 27 |
+
parser.add_argument("--threshold", default=0.5, type=float)
|
| 28 |
+
parser.add_argument("--min_speech_duration_ms", default=250, type=int)
|
| 29 |
+
parser.add_argument("--speech_pad_ms", default=30, type=int)
|
| 30 |
+
parser.add_argument("--max_speech_duration_s", default=float("inf"), type=float)
|
| 31 |
+
parser.add_argument("--window_size_samples", default=512, type=int)
|
| 32 |
+
parser.add_argument("--min_silence_duration_ms", default=100, type=int)
|
| 33 |
+
|
| 34 |
+
args = parser.parse_args()
|
| 35 |
+
return args
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def main():
|
| 39 |
+
args = get_args()
|
| 40 |
+
|
| 41 |
+
with open(args.model_name, "rb") as f:
|
| 42 |
+
model = torch.jit.load(f, map_location="cpu")
|
| 43 |
+
model.reset_states()
|
| 44 |
+
|
| 45 |
+
sample_rate, signal = wavfile.read(args.wav_file)
|
| 46 |
+
signal = signal / 32768
|
| 47 |
+
signal = torch.tensor(signal, dtype=torch.float32)
|
| 48 |
+
print(signal)
|
| 49 |
+
|
| 50 |
+
min_speech_samples = sample_rate * args.min_speech_duration_ms / 1000
|
| 51 |
+
speech_pad_samples = sample_rate * args.speech_pad_ms / 1000
|
| 52 |
+
max_speech_samples = sample_rate * args.max_speech_duration_s - args.window_size_samples - 2 * speech_pad_samples
|
| 53 |
+
min_silence_samples = sample_rate * args.min_silence_duration_ms / 1000
|
| 54 |
+
min_silence_samples_at_max_speech = sample_rate * 98 / 1000
|
| 55 |
+
|
| 56 |
+
# probs
|
| 57 |
+
speech_probs = []
|
| 58 |
+
for start in range(0, len(signal), args.window_size_samples):
|
| 59 |
+
chunk = signal[start: start + args.window_size_samples]
|
| 60 |
+
if len(chunk) < args.window_size_samples:
|
| 61 |
+
chunk = torch.nn.functional.pad(chunk, (0, int(args.window_size_samples - len(chunk))))
|
| 62 |
+
|
| 63 |
+
speech_prob = model(chunk, sample_rate).item()
|
| 64 |
+
speech_probs.append(speech_prob)
|
| 65 |
+
|
| 66 |
+
print(speech_probs)
|
| 67 |
+
|
| 68 |
+
# segments
|
| 69 |
+
triggered = False
|
| 70 |
+
speeches = list()
|
| 71 |
+
current_speech = dict()
|
| 72 |
+
neg_threshold = args.threshold - 0.15
|
| 73 |
+
temp_end = 0
|
| 74 |
+
prev_end = next_start = 0
|
| 75 |
+
|
| 76 |
+
for i, speech_prob in enumerate(speech_probs):
|
| 77 |
+
if (speech_prob >= args.threshold) and temp_end:
|
| 78 |
+
temp_end = 0
|
| 79 |
+
if next_start < prev_end:
|
| 80 |
+
next_start = args.window_size_samples * i
|
| 81 |
+
|
| 82 |
+
if (speech_prob >= args.threshold) and not triggered:
|
| 83 |
+
triggered = True
|
| 84 |
+
current_speech["start"] = args.window_size_samples * i
|
| 85 |
+
continue
|
| 86 |
+
|
| 87 |
+
if triggered and (args.window_size_samples * i) - current_speech["start"] > max_speech_samples:
|
| 88 |
+
if prev_end:
|
| 89 |
+
current_speech["end"] = prev_end
|
| 90 |
+
speeches.append(current_speech)
|
| 91 |
+
current_speech = {}
|
| 92 |
+
if next_start < prev_end:
|
| 93 |
+
triggered = False
|
| 94 |
+
else:
|
| 95 |
+
current_speech["start"] = next_start
|
| 96 |
+
prev_end = next_start = temp_end = 0
|
| 97 |
+
else:
|
| 98 |
+
current_speech["end"] = args.window_size_samples * i
|
| 99 |
+
speeches.append(current_speech)
|
| 100 |
+
current_speech = {}
|
| 101 |
+
prev_end = next_start = temp_end = 0
|
| 102 |
+
triggered = False
|
| 103 |
+
continue
|
| 104 |
+
|
| 105 |
+
if speech_prob < neg_threshold and triggered:
|
| 106 |
+
if not temp_end:
|
| 107 |
+
temp_end = args.window_size_samples * i
|
| 108 |
+
if ((args.window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech:
|
| 109 |
+
prev_end = temp_end
|
| 110 |
+
if (args.window_size_samples * i) - temp_end < min_silence_samples:
|
| 111 |
+
continue
|
| 112 |
+
else:
|
| 113 |
+
current_speech["end"] = temp_end
|
| 114 |
+
if (current_speech["end"] - current_speech["start"]) > min_speech_samples:
|
| 115 |
+
speeches.append(current_speech)
|
| 116 |
+
current_speech = {}
|
| 117 |
+
prev_end = next_start = temp_end = 0
|
| 118 |
+
triggered = False
|
| 119 |
+
continue
|
| 120 |
+
|
| 121 |
+
if current_speech and (args.audio_length_samples - current_speech["start"]) > min_speech_samples:
|
| 122 |
+
current_speech["end"] = args.audio_length_samples
|
| 123 |
+
speeches.append(current_speech)
|
| 124 |
+
|
| 125 |
+
return
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
if __name__ == '__main__':
|
| 129 |
+
main()
|
main.py
CHANGED
|
@@ -105,15 +105,15 @@ def main():
|
|
| 105 |
webrtcvad_image = gr.Image(label="image", height=300, width=720, show_label=False)
|
| 106 |
webrtcvad_end_points = gr.TextArea(label="end_points", max_lines=35)
|
| 107 |
|
| 108 |
-
gr.Examples(
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
)
|
| 117 |
|
| 118 |
# click event
|
| 119 |
webrtcvad_button.click(
|
|
|
|
| 105 |
webrtcvad_image = gr.Image(label="image", height=300, width=720, show_label=False)
|
| 106 |
webrtcvad_end_points = gr.TextArea(label="end_points", max_lines=35)
|
| 107 |
|
| 108 |
+
# gr.Examples(
|
| 109 |
+
# examples=webrtcvad_examples,
|
| 110 |
+
# inputs=[
|
| 111 |
+
# webrtcvad_wav, webrtcvad_agg, webrtcvad_frame_duration_ms,
|
| 112 |
+
# webrtcvad_padding_duration_ms, webrtcvad_silence_duration_threshold
|
| 113 |
+
# ],
|
| 114 |
+
# outputs=[webrtcvad_image, webrtcvad_end_points],
|
| 115 |
+
# fn=click_webrtcvad_button
|
| 116 |
+
# )
|
| 117 |
|
| 118 |
# click event
|
| 119 |
webrtcvad_button.click(
|
requirements.txt
CHANGED
|
@@ -4,3 +4,5 @@ wave==0.0.2
|
|
| 4 |
matplotlib==3.7.4
|
| 5 |
scipy==1.10.1
|
| 6 |
pillow==10.2.0
|
|
|
|
|
|
|
|
|
| 4 |
matplotlib==3.7.4
|
| 5 |
scipy==1.10.1
|
| 6 |
pillow==10.2.0
|
| 7 |
+
torch==2.1.2
|
| 8 |
+
torchaudio==2.1.2
|