Spaces:
Running
Running
- __pycache__/nltk_u.cpython-39.pyc +0 -0
- app.py +11 -12
__pycache__/nltk_u.cpython-39.pyc
ADDED
|
Binary file (915 Bytes). View file
|
|
|
app.py
CHANGED
|
@@ -3,12 +3,12 @@ import gradio as gr
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
import random
|
| 6 |
-
|
| 7 |
import pandas as pd
|
| 8 |
from sklearn.model_selection import train_test_split
|
| 9 |
import time
|
| 10 |
|
| 11 |
-
|
| 12 |
from timeit import default_timer as timer
|
| 13 |
from typing import Tuple, Dict
|
| 14 |
|
|
@@ -47,17 +47,17 @@ class_names= {0: 'Acne',
|
|
| 47 |
23: 'urinary tract infection'
|
| 48 |
}
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
# Model and transforms preparation
|
| 56 |
-
|
| 57 |
# Load state dict
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
# Disease Advice
|
| 62 |
disease_advice = {
|
| 63 |
'Acne': "Maintain a proper skincare routine, avoid excessive touching of the affected areas, and consider using over-the-counter topical treatments. If severe, consult a dermatologist.",
|
|
@@ -175,9 +175,8 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
|
|
| 175 |
elif message.lower() in goodbyes:
|
| 176 |
bot_message= random.choice(goodbye_replies)
|
| 177 |
else:
|
| 178 |
-
bot_message= random.choice(goodbye_replies)
|
| 179 |
-
|
| 180 |
-
else:
|
| 181 |
transform_text= vectorizer.transform([message])
|
| 182 |
transform_text= torch.tensor(transform_text.toarray()).to(torch.float32)
|
| 183 |
model.eval()
|
|
@@ -190,7 +189,7 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
|
|
| 190 |
chat_history.append((message, bot_message))
|
| 191 |
time.sleep(2)
|
| 192 |
return "", chat_history
|
| 193 |
-
|
| 194 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 195 |
|
| 196 |
|
|
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
import random
|
| 6 |
+
import nltk_u
|
| 7 |
import pandas as pd
|
| 8 |
from sklearn.model_selection import train_test_split
|
| 9 |
import time
|
| 10 |
|
| 11 |
+
from model import RNN_model
|
| 12 |
from timeit import default_timer as timer
|
| 13 |
from typing import Tuple, Dict
|
| 14 |
|
|
|
|
| 47 |
23: 'urinary tract infection'
|
| 48 |
}
|
| 49 |
|
| 50 |
+
vectorizer= nltk_u.vectorizer()
|
| 51 |
+
vectorizer.fit(train_data.text)
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
# Model and transforms preparation
|
| 56 |
+
model= RNN_model()
|
| 57 |
# Load state dict
|
| 58 |
+
model.load_state_dict(torch.load(
|
| 59 |
+
f= 'pretrained_symtom_to_disease_model.pth',
|
| 60 |
+
map_location= torch.device('cpu')))
|
| 61 |
# Disease Advice
|
| 62 |
disease_advice = {
|
| 63 |
'Acne': "Maintain a proper skincare routine, avoid excessive touching of the affected areas, and consider using over-the-counter topical treatments. If severe, consult a dermatologist.",
|
|
|
|
| 175 |
elif message.lower() in goodbyes:
|
| 176 |
bot_message= random.choice(goodbye_replies)
|
| 177 |
else:
|
| 178 |
+
#bot_message= random.choice(goodbye_replies)
|
| 179 |
+
|
|
|
|
| 180 |
transform_text= vectorizer.transform([message])
|
| 181 |
transform_text= torch.tensor(transform_text.toarray()).to(torch.float32)
|
| 182 |
model.eval()
|
|
|
|
| 189 |
chat_history.append((message, bot_message))
|
| 190 |
time.sleep(2)
|
| 191 |
return "", chat_history
|
| 192 |
+
|
| 193 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
| 194 |
|
| 195 |
|