Upload src/streamlit_app.py with huggingface_hub
Browse files- src/streamlit_app.py +176 -70
src/streamlit_app.py
CHANGED
|
@@ -1,44 +1,75 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import yaml
|
| 6 |
import os
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
from model_downloader import ModelDownloader
|
| 9 |
|
| 10 |
# Import models
|
| 11 |
-
from .
|
| 12 |
-
from .vgg16_model import LandslideModel as VGG16Model
|
| 13 |
-
from .resnet34_model import LandslideModel as ResNet34Model
|
| 14 |
-
from .efficientnetb0_model import LandslideModel as EfficientNetB0Model
|
| 15 |
-
from .mitb1_model import LandslideModel as MiTB1Model
|
| 16 |
-
from .inceptionv4_model import LandslideModel as InceptionV4Model
|
| 17 |
-
from .densenet121_model import LandslideModel as DenseNet121Model
|
| 18 |
-
from .
|
| 19 |
-
from .
|
| 20 |
-
from .
|
| 21 |
-
from .
|
| 22 |
-
from
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# Model descriptions
|
| 28 |
model_descriptions = {
|
| 29 |
-
"MobileNetV2": {"type": "mobilenet_v2", "description": "MobileNetV2 is a lightweight deep learning model for image classification and segmentation."},
|
| 30 |
-
"VGG16": {"type": "vgg16", "description": "VGG16 is a popular deep learning model known for its simplicity and depth."},
|
| 31 |
-
"ResNet34": {"type": "resnet34", "description": "ResNet34 is a deep residual network that helps in training very deep networks."},
|
| 32 |
-
"EfficientNetB0": {"type": "efficientnet_b0", "description": "EfficientNetB0 is part of the EfficientNet family, known for its efficiency and performance."},
|
| 33 |
-
"MiT-B1": {"type": "mit_b1", "description": "MiT-B1 is a transformer-based model designed for segmentation tasks."},
|
| 34 |
-
"InceptionV4": {"type": "inceptionv4", "description": "InceptionV4 is a convolutional neural network known for its inception modules."},
|
| 35 |
-
"DeepLabV3+": {"type": "
|
| 36 |
-
"DenseNet121": {"type": "densenet121", "description": "DenseNet121 is a densely connected convolutional network for image classification and segmentation."},
|
| 37 |
-
"ResNeXt50_32X4D": {"type": "resnext50_32x4d", "description": "ResNeXt50_32X4D is a highly modularized network aimed at improving accuracy."},
|
| 38 |
-
"SEResNet50": {"type": "se_resnet50", "description": "SEResNet50 is a ResNet model with squeeze-and-excitation blocks for better feature recalibration."},
|
| 39 |
-
"SEResNeXt50_32X4D": {"type": "se_resnext50_32x4d", "description": "SEResNeXt50_32X4D combines ResNeXt and SE blocks for improved performance."},
|
| 40 |
-
"SegFormerB2": {"
|
| 41 |
-
"InceptionResNetV2": {"type": "inceptionresnetv2", "description": "InceptionResNetV2 is a hybrid model combining Inception and ResNet architectures."},
|
| 42 |
}
|
| 43 |
|
| 44 |
# Streamlit app
|
|
@@ -47,7 +78,7 @@ st.set_page_config(page_title="Landslide Detection", layout="wide")
|
|
| 47 |
st.title("Landslide Detection")
|
| 48 |
st.markdown("""
|
| 49 |
## Instructions
|
| 50 |
-
1. Select a model from the sidebar.
|
| 51 |
2. Upload one or more `.h5` files.
|
| 52 |
3. The app will process the files and display the input image, prediction, and overlay.
|
| 53 |
4. You can download the prediction results.
|
|
@@ -55,46 +86,121 @@ st.markdown("""
|
|
| 55 |
|
| 56 |
# Sidebar for model selection
|
| 57 |
st.sidebar.title("Model Selection")
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
config =
|
| 62 |
-
'model_config': {
|
| 63 |
-
'model_type': model_descriptions[model_type]['type'],
|
| 64 |
-
'in_channels': 14,
|
| 65 |
-
'num_classes': 1
|
| 66 |
-
}
|
| 67 |
-
}
|
| 68 |
-
|
| 69 |
-
# Show model description
|
| 70 |
-
st.sidebar.markdown(f"**Model Type:** {model_descriptions[model_type]['type']}")
|
| 71 |
-
st.sidebar.markdown(f"**Description:** {model_descriptions[model_type]['description']}")
|
| 72 |
-
|
| 73 |
-
try:
|
| 74 |
-
# Get the appropriate model class
|
| 75 |
if model_type == "DeepLabV3+":
|
| 76 |
model_class = DeepLabV3PlusModel
|
| 77 |
else:
|
| 78 |
model_class = locals()[model_type.replace("-", "") + "Model"]
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
st.
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import h5py
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import yaml
|
| 7 |
import os
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Import models
|
| 10 |
+
from src.mobilenetv2_model import LandslideModel as MobileNetV2Model
|
| 11 |
+
from src.vgg16_model import LandslideModel as VGG16Model
|
| 12 |
+
from src.resnet34_model import LandslideModel as ResNet34Model
|
| 13 |
+
from src.efficientnetb0_model import LandslideModel as EfficientNetB0Model
|
| 14 |
+
from src.mitb1_model import LandslideModel as MiTB1Model
|
| 15 |
+
from src.inceptionv4_model import LandslideModel as InceptionV4Model
|
| 16 |
+
from src.densenet121_model import LandslideModel as DenseNet121Model
|
| 17 |
+
from src.deeplabv3plus_model import LandslideModel as DeepLabV3PlusModel
|
| 18 |
+
from src.resnext50_32x4d_model import LandslideModel as ResNeXt50_32X4DModel
|
| 19 |
+
from src.se_resnet50_model import LandslideModel as SEResNet50Model
|
| 20 |
+
from src.se_resnext50_32x4d_model import LandslideModel as SEResNeXt50_32X4DModel
|
| 21 |
+
from segformer_model import LandslideModel as SegFormerB2Model
|
| 22 |
+
from inceptionresnetv2_model import LandslideModel as InceptionResNetV2Model
|
| 23 |
+
|
| 24 |
+
# Load the configuration file
|
| 25 |
+
config = """
|
| 26 |
+
model_config:
|
| 27 |
+
model_type: "mobilenet_v2"
|
| 28 |
+
in_channels: 14
|
| 29 |
+
num_classes: 1
|
| 30 |
+
encoder_weights: "imagenet"
|
| 31 |
+
wce_weight: 0.5
|
| 32 |
+
|
| 33 |
+
dataset_config:
|
| 34 |
+
num_classes: 1
|
| 35 |
+
num_channels: 14
|
| 36 |
+
channels: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
|
| 37 |
+
normalize: False
|
| 38 |
+
|
| 39 |
+
train_config:
|
| 40 |
+
dataset_path: ""
|
| 41 |
+
checkpoint_path: "checkpoints"
|
| 42 |
+
seed: 42
|
| 43 |
+
train_val_split: 0.8
|
| 44 |
+
batch_size: 16
|
| 45 |
+
num_epochs: 100
|
| 46 |
+
lr: 0.001
|
| 47 |
+
device: "cuda:0"
|
| 48 |
+
save_config: True
|
| 49 |
+
experiment_name: "mobilenet_v2"
|
| 50 |
+
|
| 51 |
+
logging_config:
|
| 52 |
+
wandb_project: "l4s"
|
| 53 |
+
wandb_entity: "Silvamillion"
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
config = yaml.safe_load(config)
|
| 57 |
|
| 58 |
# Model descriptions
|
| 59 |
model_descriptions = {
|
| 60 |
+
"MobileNetV2": {"path": "mobilenetv2.pth", "type": "mobilenet_v2", "description": "MobileNetV2 is a lightweight deep learning model for image classification and segmentation."},
|
| 61 |
+
"VGG16": {"path": "vgg16.pth", "type": "vgg16", "description": "VGG16 is a popular deep learning model known for its simplicity and depth."},
|
| 62 |
+
"ResNet34": {"path": "resnet34.pth", "type": "resnet34", "description": "ResNet34 is a deep residual network that helps in training very deep networks."},
|
| 63 |
+
"EfficientNetB0": {"path": "effucientnetb0.pth", "type": "efficientnet_b0", "description": "EfficientNetB0 is part of the EfficientNet family, known for its efficiency and performance."},
|
| 64 |
+
"MiT-B1": {"path": "mitb1.pth", "type": "mit_b1", "description": "MiT-B1 is a transformer-based model designed for segmentation tasks."},
|
| 65 |
+
"InceptionV4": {"path": "inceptionv4.pth", "type": "inceptionv4", "description": "InceptionV4 is a convolutional neural network known for its inception modules."},
|
| 66 |
+
"DeepLabV3+": {"path": "deeplabv3.pth", "type": "deeplabv3+", "description": "DeepLabV3+ is an advanced model for semantic image segmentation."},
|
| 67 |
+
"DenseNet121": {"path": "densenet121.pth", "type": "densenet121", "description": "DenseNet121 is a densely connected convolutional network for image classification and segmentation."},
|
| 68 |
+
"ResNeXt50_32X4D": {"path": "resnext50-32x4d.pth", "type": "resnext50_32x4d", "description": "ResNeXt50_32X4D is a highly modularized network aimed at improving accuracy."},
|
| 69 |
+
"SEResNet50": {"path": "se_resnet50.pth", "type": "se_resnet50", "description": "SEResNet50 is a ResNet model with squeeze-and-excitation blocks for better feature recalibration."},
|
| 70 |
+
"SEResNeXt50_32X4D": {"path": "se_resnext50_32x4d.pth", "type": "se_resnext50_32x4d", "description": "SEResNeXt50_32X4D combines ResNeXt and SE blocks for improved performance."},
|
| 71 |
+
"SegFormerB2": {"path": "segformer.pth", "type": "segformer_b2", "description": "SegFormerB2 is a transformer-based model for semantic segmentation."},
|
| 72 |
+
"InceptionResNetV2": {"path": "inceptionresnetv2.pth", "type": "inceptionresnetv2", "description": "InceptionResNetV2 is a hybrid model combining Inception and ResNet architectures."},
|
| 73 |
}
|
| 74 |
|
| 75 |
# Streamlit app
|
|
|
|
| 78 |
st.title("Landslide Detection")
|
| 79 |
st.markdown("""
|
| 80 |
## Instructions
|
| 81 |
+
1. Select a model from the sidebar or choose to run all models.
|
| 82 |
2. Upload one or more `.h5` files.
|
| 83 |
3. The app will process the files and display the input image, prediction, and overlay.
|
| 84 |
4. You can download the prediction results.
|
|
|
|
| 86 |
|
| 87 |
# Sidebar for model selection
|
| 88 |
st.sidebar.title("Model Selection")
|
| 89 |
+
model_option = st.sidebar.radio("Choose an option", ["Select a single model", "Run all models"])
|
| 90 |
+
if model_option == "Select a single model":
|
| 91 |
+
model_type = st.sidebar.selectbox("Select Model", list(model_descriptions.keys()))
|
| 92 |
+
config['model_config']['model_type'] = model_descriptions[model_type]['type']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
if model_type == "DeepLabV3+":
|
| 94 |
model_class = DeepLabV3PlusModel
|
| 95 |
else:
|
| 96 |
model_class = locals()[model_type.replace("-", "") + "Model"]
|
| 97 |
+
model_path = model_descriptions[model_type]['path']
|
| 98 |
+
|
| 99 |
+
# Display model details in the sidebar
|
| 100 |
+
st.sidebar.markdown(f"**Model Type:** {model_descriptions[model_type]['type']}")
|
| 101 |
+
st.sidebar.markdown(f"**Model Path:** {model_descriptions[model_type]['path']}")
|
| 102 |
+
st.sidebar.markdown(f"**Description:** {model_descriptions[model_type]['description']}")
|
| 103 |
+
|
| 104 |
+
# Main content
|
| 105 |
+
st.header("Upload Data")
|
| 106 |
+
uploaded_files = st.file_uploader("Choose .h5 files...", type="h5", accept_multiple_files=True)
|
| 107 |
+
if uploaded_files:
|
| 108 |
+
for uploaded_file in uploaded_files:
|
| 109 |
+
st.write(f"Processing file: {uploaded_file.name}")
|
| 110 |
+
with st.spinner('Classifying...'):
|
| 111 |
+
with h5py.File(uploaded_file, 'r') as hdf:
|
| 112 |
+
data = np.array(hdf.get('img'))
|
| 113 |
+
data[np.isnan(data)] = 0.000001
|
| 114 |
+
channels = config["dataset_config"]["channels"]
|
| 115 |
+
image = np.zeros((128, 128, len(channels)))
|
| 116 |
+
for i, channel in enumerate(channels):
|
| 117 |
+
image[:, :, i] = data[:, :, channel-1]
|
| 118 |
+
|
| 119 |
+
# Transform the image to the required format
|
| 120 |
+
image = image.transpose((2, 0, 1)) # (H, W, C) to (C, H, W)
|
| 121 |
+
image = torch.from_numpy(image).float().unsqueeze(0) # Add batch dimension
|
| 122 |
+
|
| 123 |
+
if model_option == "Select a single model":
|
| 124 |
+
# Process the image with the selected model
|
| 125 |
+
st.write(f"Using model: {model_type}")
|
| 126 |
+
|
| 127 |
+
# Load the model
|
| 128 |
+
model = model_class(config)
|
| 129 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 130 |
+
model.eval()
|
| 131 |
+
|
| 132 |
+
# Make prediction
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
prediction = model(image)
|
| 135 |
+
prediction = torch.sigmoid(prediction).cpu().numpy()
|
| 136 |
+
|
| 137 |
+
# Display prediction
|
| 138 |
+
st.header(f"Prediction Results - {model_type}")
|
| 139 |
+
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
|
| 140 |
+
img = image.squeeze().permute(1, 2, 0).numpy()
|
| 141 |
+
img = (img - img.min()) / (img.max() - img.min()) # Normalize the image to [0, 1] range for display
|
| 142 |
+
ax[0].imshow(img[:, :, 1:4]) # Display first three channels as RGB
|
| 143 |
+
ax[0].set_title("Input Image")
|
| 144 |
+
ax[1].imshow(prediction.squeeze() > 0.5, cmap='plasma') # Apply threshold
|
| 145 |
+
ax[1].set_title("Prediction")
|
| 146 |
+
ax[2].imshow(img[:, :, :3]) # Display first three channels as RGB
|
| 147 |
+
ax[2].imshow(prediction.squeeze() > 0.5, cmap='plasma', alpha=0.3) # Overlay prediction
|
| 148 |
+
ax[2].set_title("Overlay")
|
| 149 |
+
st.pyplot(fig)
|
| 150 |
+
|
| 151 |
+
# Option to download the prediction
|
| 152 |
+
st.write(f"Download the prediction as a .npy file for {model_type}:")
|
| 153 |
+
npy_data = prediction.squeeze()
|
| 154 |
+
st.download_button(
|
| 155 |
+
label=f"Download Prediction - {model_type}",
|
| 156 |
+
data=npy_data.tobytes(),
|
| 157 |
+
file_name=f"{uploaded_file.name.split('.')[0]}_{model_type}_prediction.npy",
|
| 158 |
+
mime="application/octet-stream"
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
else:
|
| 162 |
+
# Process the image with each model
|
| 163 |
+
for model_name, model_info in model_descriptions.items():
|
| 164 |
+
st.write(f"Using model: {model_name}")
|
| 165 |
+
if model_name == "DeepLabV3+":
|
| 166 |
+
model_class = DeepLabV3PlusModel
|
| 167 |
+
else:
|
| 168 |
+
model_class = locals()[model_name.replace("-", "") + "Model"]
|
| 169 |
+
model_path = model_info['path']
|
| 170 |
+
config['model_config']['model_type'] = model_info['type']
|
| 171 |
+
|
| 172 |
+
# Load the model
|
| 173 |
+
model = model_class(config)
|
| 174 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=False)
|
| 175 |
+
model.eval()
|
| 176 |
+
|
| 177 |
+
# Make prediction
|
| 178 |
+
with torch.no_grad():
|
| 179 |
+
prediction = model(image)
|
| 180 |
+
prediction = torch.sigmoid(prediction).cpu().numpy()
|
| 181 |
+
|
| 182 |
+
# Display prediction
|
| 183 |
+
st.header(f"Prediction Results - {model_name}")
|
| 184 |
+
fig, ax = plt.subplots(1, 3, figsize=(15, 5))
|
| 185 |
+
img = image.squeeze().permute(1, 2, 0).numpy()
|
| 186 |
+
img = (img - img.min()) / (img.max() - img.min()) # Normalize the image to [0, 1] range for display
|
| 187 |
+
ax[0].imshow(img[:, :, :3]) # Display first three channels as RGB
|
| 188 |
+
ax[0].set_title("Input Image")
|
| 189 |
+
ax[1].imshow(prediction.squeeze() > 0.5, cmap='plasma') # Apply threshold
|
| 190 |
+
ax[1].set_title("Prediction")
|
| 191 |
+
ax[2].imshow(img[:, :, :3]) # Display first three channels as RGB
|
| 192 |
+
ax[2].imshow(prediction.squeeze() > 0.5, cmap='plasma', alpha=0.3) # Overlay prediction
|
| 193 |
+
ax[2].set_title("Overlay")
|
| 194 |
+
st.pyplot(fig)
|
| 195 |
+
|
| 196 |
+
# Option to download the prediction
|
| 197 |
+
st.write(f"Download the prediction as a .npy file for {model_name}:")
|
| 198 |
+
npy_data = prediction.squeeze()
|
| 199 |
+
st.download_button(
|
| 200 |
+
label=f"Download Prediction - {model_name}",
|
| 201 |
+
data=npy_data.tobytes(),
|
| 202 |
+
file_name=f"{uploaded_file.name.split('.')[0]}_{model_name}_prediction.npy",
|
| 203 |
+
mime="application/octet-stream"
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
st.success('Done!')
|