Upload src/model_downloader.py with huggingface_hub
Browse files- src/model_downloader.py +142 -0
src/model_downloader.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import requests
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from tqdm.auto import tqdm
|
| 7 |
+
|
| 8 |
+
class ModelDownloader:
|
| 9 |
+
def __init__(self):
|
| 10 |
+
# Create models directory for caching
|
| 11 |
+
self.models_dir = Path("/app/models")
|
| 12 |
+
self.models_dir.mkdir(exist_ok=True)
|
| 13 |
+
|
| 14 |
+
# Kaggle model repository details
|
| 15 |
+
self.kaggle_model_url = "https://www.kaggle.com/models/harshshinde8/sims/frameworks/PyTorch/serve"
|
| 16 |
+
|
| 17 |
+
# Model mapping with Kaggle model IDs
|
| 18 |
+
self.model_files = {
|
| 19 |
+
"deeplabv3plus": {
|
| 20 |
+
"file": "deeplabv3.pth",
|
| 21 |
+
"id": "deeplabv3"
|
| 22 |
+
},
|
| 23 |
+
"densenet121": {
|
| 24 |
+
"file": "densenet121.pth",
|
| 25 |
+
"id": "densenet121"
|
| 26 |
+
},
|
| 27 |
+
"efficientnetb0": {
|
| 28 |
+
"file": "effucientnetb0.pth",
|
| 29 |
+
"id": "effucientnetb0"
|
| 30 |
+
},
|
| 31 |
+
"inceptionresnetv2": {
|
| 32 |
+
"file": "inceptionresnetv2.pth",
|
| 33 |
+
"id": "inceptionresnetv2"
|
| 34 |
+
},
|
| 35 |
+
"inceptionv4": {
|
| 36 |
+
"file": "inceptionv4.pth",
|
| 37 |
+
"id": "inceptionv4"
|
| 38 |
+
},
|
| 39 |
+
"mitb1": {
|
| 40 |
+
"file": "mitb1.pth",
|
| 41 |
+
"id": "mitb1"
|
| 42 |
+
},
|
| 43 |
+
"mobilenetv2": {
|
| 44 |
+
"file": "mobilenetv2.pth",
|
| 45 |
+
"id": "mobilenetv2"
|
| 46 |
+
},
|
| 47 |
+
"resnet34": {
|
| 48 |
+
"file": "resnet34.pth",
|
| 49 |
+
"id": "resnet34"
|
| 50 |
+
},
|
| 51 |
+
"resnext50_32x4d": {
|
| 52 |
+
"file": "resnext50-32x4d.pth",
|
| 53 |
+
"id": "resnext50-32x4d"
|
| 54 |
+
},
|
| 55 |
+
"se_resnet50": {
|
| 56 |
+
"file": "se_resnet50.pth",
|
| 57 |
+
"id": "se_resnet50"
|
| 58 |
+
},
|
| 59 |
+
"se_resnext50_32x4d": {
|
| 60 |
+
"file": "se_resnext50_32x4d.pth",
|
| 61 |
+
"id": "se_resnext50_32x4d"
|
| 62 |
+
},
|
| 63 |
+
"segformer": {
|
| 64 |
+
"file": "segformer.pth",
|
| 65 |
+
"id": "segformer"
|
| 66 |
+
},
|
| 67 |
+
"vgg16": {
|
| 68 |
+
"file": "vgg16.pth",
|
| 69 |
+
"id": "vgg16"
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
def download_from_kaggle(self, model_name):
|
| 74 |
+
"""
|
| 75 |
+
Download model from Kaggle Models repository
|
| 76 |
+
Args:
|
| 77 |
+
model_name (str): Name of the model to download
|
| 78 |
+
Returns:
|
| 79 |
+
str: Path to the downloaded model file
|
| 80 |
+
"""
|
| 81 |
+
if model_name not in self.model_files:
|
| 82 |
+
raise ValueError(f"Model {model_name} not found. Available models: {list(self.model_files.keys())}")
|
| 83 |
+
|
| 84 |
+
model_info = self.model_files[model_name]
|
| 85 |
+
model_path = self.models_dir / model_info['file']
|
| 86 |
+
|
| 87 |
+
# If model already exists, return path
|
| 88 |
+
if model_path.exists():
|
| 89 |
+
return str(model_path)
|
| 90 |
+
|
| 91 |
+
# Construct download URL for the specific model
|
| 92 |
+
download_url = f"{self.kaggle_model_url}/{model_info['id']}/1"
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
st.info(f"Downloading model {model_name} from Kaggle Models...")
|
| 96 |
+
progress_bar = st.progress(0)
|
| 97 |
+
|
| 98 |
+
# Download with progress
|
| 99 |
+
response = requests.get(download_url, stream=True)
|
| 100 |
+
response.raise_for_status()
|
| 101 |
+
|
| 102 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 103 |
+
block_size = 1024 # 1 Kibibyte
|
| 104 |
+
|
| 105 |
+
with open(model_path, 'wb') as f:
|
| 106 |
+
for i, data in enumerate(response.iter_content(block_size)):
|
| 107 |
+
progress_bar.progress(min(i * block_size / total_size, 1.0))
|
| 108 |
+
f.write(data)
|
| 109 |
+
|
| 110 |
+
st.success(f"Successfully downloaded {model_name}")
|
| 111 |
+
return str(model_path)
|
| 112 |
+
|
| 113 |
+
except requests.exceptions.RequestException as e:
|
| 114 |
+
raise Exception(f"Failed to download model from Kaggle: {str(e)}")
|
| 115 |
+
|
| 116 |
+
def get_model_path(self, model_name):
|
| 117 |
+
"""
|
| 118 |
+
Get the path for a model file, downloading it from Kaggle if necessary
|
| 119 |
+
Args:
|
| 120 |
+
model_name (str): Name of the model (e.g., 'deeplabv3plus', 'densenet121', etc.)
|
| 121 |
+
Returns:
|
| 122 |
+
str: Path to the model file
|
| 123 |
+
"""
|
| 124 |
+
if model_name not in self.model_files:
|
| 125 |
+
raise ValueError(f"Model {model_name} not found. Available models: {list(self.model_files.keys())}")
|
| 126 |
+
|
| 127 |
+
model_info = self.model_files[model_name]
|
| 128 |
+
model_path = self.models_dir / model_info['file']
|
| 129 |
+
|
| 130 |
+
# If model doesn't exist locally, download it
|
| 131 |
+
if not model_path.exists():
|
| 132 |
+
return self.download_from_kaggle(model_name)
|
| 133 |
+
|
| 134 |
+
return str(model_path)
|
| 135 |
+
|
| 136 |
+
def list_available_models(self):
|
| 137 |
+
"""
|
| 138 |
+
List all available models
|
| 139 |
+
Returns:
|
| 140 |
+
list: List of available model names
|
| 141 |
+
"""
|
| 142 |
+
return list(self.model_files.keys())
|