Spaces:
Running
Running
Update utils.py
Browse files
utils.py
CHANGED
|
@@ -4,11 +4,14 @@ utils.py
|
|
| 4 |
|
| 5 |
# Standard imports
|
| 6 |
import os
|
| 7 |
-
from typing import List
|
| 8 |
|
| 9 |
# Third party imports
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
from openai import OpenAI
|
|
|
|
|
|
|
| 12 |
|
| 13 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
| 14 |
|
|
@@ -42,3 +45,102 @@ def get_embeddings(
|
|
| 42 |
# Extract embeddings from response
|
| 43 |
embeddings = np.array([data.embedding for data in response.data])
|
| 44 |
return embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Standard imports
|
| 6 |
import os
|
| 7 |
+
from typing import List, Tuple
|
| 8 |
|
| 9 |
# Third party imports
|
| 10 |
import numpy as np
|
| 11 |
+
from google import genai
|
| 12 |
from openai import OpenAI
|
| 13 |
+
from sentence_transformers import SentenceTransformer
|
| 14 |
+
from transformers import AutoModel
|
| 15 |
|
| 16 |
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
| 17 |
|
|
|
|
| 45 |
# Extract embeddings from response
|
| 46 |
embeddings = np.array([data.embedding for data in response.data])
|
| 47 |
return embeddings
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
MODEL_CONFIGS = {
|
| 51 |
+
"lionguard-2": {
|
| 52 |
+
"label": "LionGuard 2",
|
| 53 |
+
"repo_id": "govtech/lionguard-2",
|
| 54 |
+
"embedding_strategy": "openai",
|
| 55 |
+
"embedding_model": "text-embedding-3-large",
|
| 56 |
+
},
|
| 57 |
+
"lionguard-2-lite": {
|
| 58 |
+
"label": "LionGuard 2 Lite",
|
| 59 |
+
"repo_id": "govtech/lionguard-2-lite",
|
| 60 |
+
"embedding_strategy": "sentence_transformer",
|
| 61 |
+
"embedding_model": "google/embeddinggemma-300m",
|
| 62 |
+
},
|
| 63 |
+
"lionguard-2.1": {
|
| 64 |
+
"label": "LionGuard 2.1",
|
| 65 |
+
"repo_id": "govtech/lionguard-2.1",
|
| 66 |
+
"embedding_strategy": "gemini",
|
| 67 |
+
"embedding_model": "gemini-embedding-001",
|
| 68 |
+
},
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
DEFAULT_MODEL_KEY = "lionguard-2.1"
|
| 72 |
+
MODEL_CACHE = {}
|
| 73 |
+
EMBEDDING_MODEL_CACHE = {}
|
| 74 |
+
current_model_choice = DEFAULT_MODEL_KEY
|
| 75 |
+
GEMINI_CLIENT = None
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def resolve_model_key(model_key: str = None) -> str:
|
| 79 |
+
key = model_key or current_model_choice
|
| 80 |
+
if key not in MODEL_CONFIGS:
|
| 81 |
+
raise ValueError(f"Unknown model selection: {key}")
|
| 82 |
+
return key
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def load_model_instance(model_key: str):
|
| 86 |
+
key = resolve_model_key(model_key)
|
| 87 |
+
if key not in MODEL_CACHE:
|
| 88 |
+
repo_id = MODEL_CONFIGS[key]["repo_id"]
|
| 89 |
+
MODEL_CACHE[key] = AutoModel.from_pretrained(repo_id, trust_remote_code=True)
|
| 90 |
+
return MODEL_CACHE[key]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def get_sentence_transformer(model_name: str):
|
| 94 |
+
if model_name not in EMBEDDING_MODEL_CACHE:
|
| 95 |
+
EMBEDDING_MODEL_CACHE[model_name] = SentenceTransformer(model_name)
|
| 96 |
+
return EMBEDDING_MODEL_CACHE[model_name]
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def get_gemini_client():
|
| 100 |
+
global GEMINI_CLIENT
|
| 101 |
+
if GEMINI_CLIENT is None:
|
| 102 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
| 103 |
+
if not api_key:
|
| 104 |
+
raise EnvironmentError(
|
| 105 |
+
"GEMINI_API_KEY environment variable is required for LionGuard 2.1."
|
| 106 |
+
)
|
| 107 |
+
GEMINI_CLIENT = genai.Client(api_key=api_key)
|
| 108 |
+
return GEMINI_CLIENT
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def get_model_embeddings(model_key: str, texts: List[str]) -> np.ndarray:
|
| 112 |
+
key = resolve_model_key(model_key)
|
| 113 |
+
config = MODEL_CONFIGS[key]
|
| 114 |
+
strategy = config["embedding_strategy"]
|
| 115 |
+
model_name = config.get("embedding_model")
|
| 116 |
+
|
| 117 |
+
if strategy == "openai":
|
| 118 |
+
return get_embeddings(texts, model=model_name)
|
| 119 |
+
if strategy == "sentence_transformer":
|
| 120 |
+
embedder = get_sentence_transformer(model_name)
|
| 121 |
+
formatted_texts = [f"task: classification | query: {text}" for text in texts]
|
| 122 |
+
embeddings = embedder.encode(formatted_texts)
|
| 123 |
+
return np.array(embeddings)
|
| 124 |
+
if strategy == "gemini":
|
| 125 |
+
client = get_gemini_client()
|
| 126 |
+
result = client.models.embed_content(model=model_name, contents=texts)
|
| 127 |
+
return np.array([embedding.values for embedding in result.embeddings])
|
| 128 |
+
|
| 129 |
+
raise ValueError(f"Unsupported embedding strategy: {strategy}")
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def predict_with_model(texts: List[str], model_key: str = None) -> Tuple[dict, str]:
|
| 133 |
+
key = resolve_model_key(model_key)
|
| 134 |
+
embeddings = get_model_embeddings(key, texts)
|
| 135 |
+
model = load_model_instance(key)
|
| 136 |
+
return model.predict(embeddings), key
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def set_active_model(model_key: str) -> str:
|
| 140 |
+
if model_key not in MODEL_CONFIGS:
|
| 141 |
+
return f"⚠️ Unknown model {model_key}"
|
| 142 |
+
global current_model_choice
|
| 143 |
+
current_model_choice = model_key
|
| 144 |
+
load_model_instance(model_key)
|
| 145 |
+
label = MODEL_CONFIGS[model_key]["label"]
|
| 146 |
+
return f"🦁 Using {label} ({model_key})"
|