Spaces:
Running
Running
File size: 19,314 Bytes
dcb5c5c bc1321c 651ee96 be9f5cb 651ee96 bc1321c dcb5c5c 29d8f59 dcb5c5c 29d8f59 be9f5cb bc1321c be9f5cb bc1321c 29d8f59 651ee96 dcb5c5c 651ee96 bc1321c 651ee96 bc1321c 29d8f59 651ee96 29d8f59 651ee96 bc1321c 29d8f59 651ee96 29d8f59 651ee96 29d8f59 651ee96 07ac121 651ee96 07ac121 651ee96 07ac121 651ee96 bc1321c 651ee96 29d8f59 651ee96 29d8f59 651ee96 29d8f59 651ee96 bc1321c 651ee96 29d8f59 bc1321c 651ee96 29d8f59 651ee96 be9f5cb bc1321c be9f5cb bc1321c be9f5cb bc1321c be9f5cb bc1321c 651ee96 be9f5cb 651ee96 29d8f59 651ee96 29d8f59 bc1321c be9f5cb bc1321c be9f5cb 651ee96 be9f5cb bc1321c be9f5cb bc1321c be9f5cb bc1321c be9f5cb bc1321c be9f5cb 651ee96 be9f5cb 29d8f59 be9f5cb 29d8f59 bc1321c be9f5cb bc1321c 651ee96 29d8f59 651ee96 29d8f59 651ee96 bc1321c 651ee96 bc1321c 651ee96 29d8f59 651ee96 29d8f59 651ee96 29d8f59 651ee96 29d8f59 651ee96 bc1321c 651ee96 bc1321c 651ee96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
"""
app.py
"""
# Standard imports
import json
import os
import sys
import uuid
import asyncio
from datetime import datetime
# Third party imports
import openai
import gradio as gr
import gspread
from google.oauth2 import service_account
from transformers import AutoModel
# Local imports
from utils import get_embeddings
# --- Categories
CATEGORIES = {
"binary": ["binary"],
"hateful": ["hateful_l1", "hateful_l2"],
"insults": ["insults"],
"sexual": [
"sexual_l1",
"sexual_l2",
],
"physical_violence": ["physical_violence"],
"self_harm": ["self_harm_l1", "self_harm_l2"],
"all_other_misconduct": [
"all_other_misconduct_l1",
"all_other_misconduct_l2",
],
}
# --- OpenAI Setup ---
# Create both sync and async clients
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
async_client = openai.AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# --- Model Loading ---
def load_lionguard2():
model = AutoModel.from_pretrained("govtech/lionguard-2", trust_remote_code=True)
return model
model = load_lionguard2()
# --- Google Sheets Config ---
GOOGLE_SHEET_URL = os.environ.get("GOOGLE_SHEET_URL")
GOOGLE_CREDENTIALS = os.environ.get("GCP_SERVICE_ACCOUNT")
RESULTS_SHEET_NAME = "results"
VOTES_SHEET_NAME = "votes"
CHATBOT_SHEET_NAME = "chatbot"
def get_gspread_client():
credentials = service_account.Credentials.from_service_account_info(
json.loads(GOOGLE_CREDENTIALS),
scopes=[
"https://www.googleapis.com/auth/spreadsheets",
"https://www.googleapis.com/auth/drive",
],
)
return gspread.authorize(credentials)
def save_results_data(row):
try:
gc = get_gspread_client()
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(RESULTS_SHEET_NAME)
ws.append_row(list(row.values()))
except Exception as e:
print(f"Error saving results data: {e}")
def save_vote_data(text_id, agree):
try:
gc = get_gspread_client()
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(VOTES_SHEET_NAME)
vote_row = {
"datetime": datetime.now().isoformat(),
"text_id": text_id,
"agree": agree
}
ws.append_row(list(vote_row.values()))
except Exception as e:
print(f"Error saving vote data: {e}")
def log_chatbot_data(row):
try:
gc = get_gspread_client()
sheet = gc.open_by_url(GOOGLE_SHEET_URL)
ws = sheet.worksheet(CHATBOT_SHEET_NAME)
ws.append_row([
row["datetime"], row["text_id"], row["text"], row["binary_score"],
row["hateful_l1_score"], row["hateful_l2_score"], row["insults_score"],
row["sexual_l1_score"], row["sexual_l2_score"], row["physical_violence_score"],
row["self_harm_l1_score"], row["self_harm_l2_score"], row["aom_l1_score"],
row["aom_l2_score"], row["openai_score"]
])
except Exception as e:
print(f"Error saving chatbot data: {e}")
# --- Classifier logic ---
def format_score_with_style(score_str):
if score_str == "-":
return '<span style="color: #9ca3af;">-</span>'
try:
score = float(score_str)
percentage = int(score * 100)
if score < 0.4:
return f'<span style="color: #34d399; font-weight:600;">π {percentage}%</span>'
elif 0.4 <= score < 0.7:
return f'<span style="color: #fbbf24; font-weight:600;">β οΈ {percentage}%</span>'
else:
return f'<span style="color: #fca5a5; font-weight:600;">π¨ {percentage}%</span>'
except:
return score_str
def format_binary_score(score):
percentage = int(score * 100)
if score < 0.4:
return f'<div style="background:linear-gradient(135deg, #065f46 0%, #047857 100%); color:#34d399; padding:24px 0; border-radius:20px; text-align:center; font-weight:900; border:3px solid #10b981; font-size:24px; margin:24px 0; box-shadow:0 4px 24px rgba(0,0,0,0.3);">β
Pass ({percentage}/100)</div>'
elif 0.4 <= score < 0.7:
return f'<div style="background:linear-gradient(135deg, #92400e 0%, #b45309 100%); color:#fbbf24; padding:24px 0; border-radius:20px; text-align:center; font-weight:900; border:3px solid #f59e0b; font-size:24px; margin:24px 0; box-shadow:0 4px 24px rgba(0,0,0,0.3);">β οΈ Warning ({percentage}/100)</div>'
else:
return f'<div style="background:linear-gradient(135deg, #991b1b 0%, #b91c1c 100%); color:#fca5a5; padding:24px 0; border-radius:20px; text-align:center; font-weight:900; border:3px solid #ef4444; font-size:24px; margin:24px 0; box-shadow:0 4px 24px rgba(0,0,0,0.3);">π¨ Fail ({percentage}/100)</div>'
def analyze_text(text):
if not text.strip():
empty_html = '<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Enter text to analyze</div>'
return empty_html, empty_html, "", ""
try:
text_id = str(uuid.uuid4())
embeddings = get_embeddings([text])
results = model.predict(embeddings)
binary_score = results.get('binary', [0.0])[0]
main_categories = ['hateful', 'insults', 'sexual', 'physical_violence', 'self_harm', 'all_other_misconduct']
categories_html = []
max_scores = {}
for category in main_categories:
subcategories = CATEGORIES[category]
category_name = category.replace('_', ' ').title()
category_emojis = {
'Hateful': 'π€¬',
'Insults': 'π’',
'Sexual': 'π',
'Physical Violence': 'βοΈ',
'Self Harm': 'βΉοΈ',
'All Other Misconduct': 'π
ββοΈ'
}
category_display = f"{category_emojis.get(category_name, 'π')} {category_name}"
level_scores = [results.get(subcategory_key, [0.0])[0] for subcategory_key in subcategories]
max_score = max(level_scores) if level_scores else 0.0
max_scores[category] = max_score
categories_html.append(f'''
<tr>
<td>{category_display}</td>
<td style="text-align: center;">{format_score_with_style(f"{max_score:.4f}")}</td>
</tr>
''')
html_table = f'''
<table style="width:100%">
<thead>
<tr><th>Category</th><th>Score</th></tr>
</thead>
<tbody>
{''.join(categories_html)}
</tbody>
</table>
'''
# Save to Google Sheets if enabled
if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
results_row = {
"datetime": datetime.now().isoformat(),
"text_id": text_id,
"text": text,
"binary_score": binary_score,
}
for category in main_categories:
results_row[f"{category}_max"] = max_scores[category]
save_results_data(results_row)
voting_html = '<div>Help improve LionGuard2! Rate the analysis below.</div>'
return format_binary_score(binary_score), html_table, text_id, voting_html
except Exception as e:
error_msg = f"Error analyzing text: {str(e)}"
return f'<div style="color: #fca5a5;">β {error_msg}</div>', '', '', ''
def vote_thumbs_up(text_id):
if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
save_vote_data(text_id, True)
return '<div style="color: #34d399; font-weight:700;">π Thank you!</div>'
return '<div>Voting not available or analysis not yet run.</div>'
def vote_thumbs_down(text_id):
if text_id and GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
save_vote_data(text_id, False)
return '<div style="color: #fca5a5; font-weight:700;">π Thanks for the feedback!</div>'
return '<div>Voting not available or analysis not yet run.</div>'
# --- Guardrail Comparison logic (ASYNC VERSION) ---
async def get_openai_response_async(message, system_prompt="You are a helpful assistant."):
"""Async version of OpenAI API call"""
try:
response = await async_client.chat.completions.create(
model="gpt-4.1-nano",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
],
max_tokens=500,
temperature=0,
seed=42,
)
return response.choices[0].message.content
except Exception as e:
return f"Error: {str(e)}. Please check your OpenAI API key."
async def openai_moderation_async(message):
"""Async version of OpenAI moderation"""
try:
response = await async_client.moderations.create(input=message)
return response.results[0].flagged
except Exception as e:
print(f"Error in OpenAI moderation: {e}")
return False
def lionguard_2_sync(message, threshold=0.5):
"""LionGuard remains sync as it's using a local model"""
try:
embeddings = get_embeddings([message])
results = model.predict(embeddings)
binary_prob = results['binary'][0]
return binary_prob > threshold, binary_prob
except Exception as e:
print(f"Error in LionGuard 2: {e}")
return False, 0.0
async def process_no_moderation(message, history_no_mod):
"""Process message without moderation"""
no_mod_response = await get_openai_response_async(message)
history_no_mod.append({"role": "user", "content": message})
history_no_mod.append({"role": "assistant", "content": no_mod_response})
return history_no_mod
async def process_openai_moderation(message, history_openai):
"""Process message with OpenAI moderation"""
openai_flagged = await openai_moderation_async(message)
history_openai.append({"role": "user", "content": message})
if openai_flagged:
openai_response = "π« This message has been flagged by OpenAI moderation"
history_openai.append({"role": "assistant", "content": openai_response})
else:
openai_response = await get_openai_response_async(message)
history_openai.append({"role": "assistant", "content": openai_response})
return history_openai
async def process_lionguard(message, history_lg):
"""Process message with LionGuard 2"""
# Run LionGuard sync check in thread pool to not block
loop = asyncio.get_event_loop()
lg_flagged, lg_score = await loop.run_in_executor(None, lionguard_2_sync, message, 0.5)
history_lg.append({"role": "user", "content": message})
if lg_flagged:
lg_response = "π« This message has been flagged by LionGuard 2"
history_lg.append({"role": "assistant", "content": lg_response})
else:
lg_response = await get_openai_response_async(message)
history_lg.append({"role": "assistant", "content": lg_response})
return history_lg, lg_score
async def process_message_async(message, history_no_mod, history_openai, history_lg):
"""Process message concurrently across all three guardrails"""
if not message.strip():
return history_no_mod, history_openai, history_lg, ""
# Run all three processes concurrently using asyncio.gather
results = await asyncio.gather(
process_no_moderation(message, history_no_mod),
process_openai_moderation(message, history_openai),
process_lionguard(message, history_lg),
return_exceptions=True # Continue even if one fails
)
# Unpack results
history_no_mod = results[0] if not isinstance(results[0], Exception) else history_no_mod
history_openai = results[1] if not isinstance(results[1], Exception) else history_openai
history_lg_result = results[2] if not isinstance(results[2], Exception) else (history_lg, 0.0)
history_lg = history_lg_result[0]
lg_score = history_lg_result[1] if isinstance(history_lg_result, tuple) else 0.0
# --- Logging for chatbot worksheet (runs in background) ---
if GOOGLE_SHEET_URL and GOOGLE_CREDENTIALS:
try:
loop = asyncio.get_event_loop()
# Run logging in thread pool so it doesn't block
loop.run_in_executor(None, _log_chatbot_sync, message, lg_score)
except Exception as e:
print(f"Chatbot logging failed: {e}")
return history_no_mod, history_openai, history_lg, ""
def _log_chatbot_sync(message, lg_score):
"""Sync helper for logging - runs in thread pool"""
try:
embeddings = get_embeddings([message])
results = model.predict(embeddings)
now = datetime.now().isoformat()
text_id = str(uuid.uuid4())
row = {
"datetime": now,
"text_id": text_id,
"text": message,
"binary_score": results.get("binary", [None])[0],
"hateful_l1_score": results.get(CATEGORIES['hateful'][0], [None])[0],
"hateful_l2_score": results.get(CATEGORIES['hateful'][1], [None])[0],
"insults_score": results.get(CATEGORIES['insults'][0], [None])[0],
"sexual_l1_score": results.get(CATEGORIES['sexual'][0], [None])[0],
"sexual_l2_score": results.get(CATEGORIES['sexual'][1], [None])[0],
"physical_violence_score": results.get(CATEGORIES['physical_violence'][0], [None])[0],
"self_harm_l1_score": results.get(CATEGORIES['self_harm'][0], [None])[0],
"self_harm_l2_score": results.get(CATEGORIES['self_harm'][1], [None])[0],
"aom_l1_score": results.get(CATEGORIES['all_other_misconduct'][0], [None])[0],
"aom_l2_score": results.get(CATEGORIES['all_other_misconduct'][1], [None])[0],
"openai_score": None
}
try:
openai_result = client.moderations.create(input=message)
row["openai_score"] = float(openai_result.results[0].category_scores.get("hate", 0.0))
except Exception:
row["openai_score"] = None
log_chatbot_data(row)
except Exception as e:
print(f"Error in sync logging: {e}")
def process_message(message, history_no_mod, history_openai, history_lg):
"""Wrapper function for Gradio (converts async to sync)"""
return asyncio.run(process_message_async(message, history_no_mod, history_openai, history_lg))
def clear_all_chats():
return [], [], []
# ---- MAIN GRADIO UI ----
DISCLAIMER = """
<div style='background: #fbbf24; color: #1e293b; border-radius: 8px; padding: 14px; margin-bottom: 12px; font-size: 15px; font-weight:500;'>
β οΈ LionGuard 2 may make mistakes. All entries are logged (anonymised) to improve the model.
</div>
"""
with gr.Blocks(title="LionGuard 2 Demo", theme=gr.themes.Soft()) as demo:
gr.HTML("<h1 style='text-align:center'>LionGuard 2 Demo</h1>")
with gr.Tabs():
with gr.Tab("Classifier"):
gr.HTML(DISCLAIMER)
with gr.Row():
with gr.Column(scale=1, min_width=400):
text_input = gr.Textbox(
label="Enter text to analyze:",
placeholder="Type your text here...",
lines=8,
max_lines=16,
container=True
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Column(scale=1, min_width=400):
binary_output = gr.HTML(
value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic; font-size:36px;">Enter text to analyze</div>'
)
category_table = gr.HTML(
value='<div style="text-align: center; color: #9ca3af; padding: 30px; font-style: italic;">Category scores will appear here after analysis</div>'
)
voting_feedback = gr.HTML(value="")
current_text_id = gr.Textbox(value="", visible=False)
with gr.Row(visible=False) as voting_buttons_row:
thumbs_up_btn = gr.Button("π Looks Accurate", variant="primary")
thumbs_down_btn = gr.Button("π Looks Wrong", variant="secondary")
def analyze_and_show_voting(text):
binary_score, category_table_val, text_id, voting_html = analyze_text(text)
show_vote = gr.update(visible=True) if text_id else gr.update(visible=False)
return binary_score, category_table_val, text_id, show_vote, "", ""
analyze_btn.click(
analyze_and_show_voting,
inputs=[text_input],
outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
)
text_input.submit(
analyze_and_show_voting,
inputs=[text_input],
outputs=[binary_output, category_table, current_text_id, voting_buttons_row, voting_feedback, voting_feedback]
)
thumbs_up_btn.click(vote_thumbs_up, inputs=[current_text_id], outputs=[voting_feedback])
thumbs_down_btn.click(vote_thumbs_down, inputs=[current_text_id], outputs=[voting_feedback])
with gr.Tab("Guardrail Comparison"):
gr.HTML(DISCLAIMER)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### π΅ No Moderation")
chatbot_no_mod = gr.Chatbot(height=650, label="No Moderation", show_label=False, bubble_full_width=False, type='messages')
with gr.Column(scale=1):
gr.Markdown("#### π OpenAI Moderation")
chatbot_openai = gr.Chatbot(height=650, label="OpenAI Moderation", show_label=False, bubble_full_width=False, type='messages')
with gr.Column(scale=1):
gr.Markdown("#### π‘οΈ LionGuard 2")
chatbot_lg = gr.Chatbot(height=650, label="LionGuard 2", show_label=False, bubble_full_width=False, type='messages')
gr.Markdown("##### π¬ Send Message to All Models")
with gr.Row():
message_input = gr.Textbox(
placeholder="Type your message to compare responses...",
show_label=False,
scale=4
)
send_btn = gr.Button("Send", variant="primary", scale=1)
with gr.Row():
clear_btn = gr.Button("Clear All Chats", variant="stop")
send_btn.click(
process_message,
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
)
message_input.submit(
process_message,
inputs=[message_input, chatbot_no_mod, chatbot_openai, chatbot_lg],
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg, message_input]
)
clear_btn.click(
clear_all_chats,
outputs=[chatbot_no_mod, chatbot_openai, chatbot_lg]
)
if __name__ == "__main__":
demo.launch()
|