Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -40,9 +40,6 @@ def initialize_models(device):
|
|
| 40 |
g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
|
| 41 |
"JeffreyXiang/TRELLIS-image-large"
|
| 42 |
)
|
| 43 |
-
if torch.cuda.is_available():
|
| 44 |
-
print("Moving trellis_pipeline to CUDA")
|
| 45 |
-
g.trellis_pipeline = g.trellis_pipeline.to("cuda")
|
| 46 |
|
| 47 |
# ์ด๋ฏธ์ง ์์ฑ ํ์ดํ๋ผ์ธ
|
| 48 |
print("Loading flux_pipe...")
|
|
@@ -67,7 +64,7 @@ def initialize_models(device):
|
|
| 67 |
g.translator = transformers_pipeline(
|
| 68 |
"translation",
|
| 69 |
model="Helsinki-NLP/opus-mt-ko-en",
|
| 70 |
-
device=device
|
| 71 |
)
|
| 72 |
print("Model initialization completed successfully")
|
| 73 |
|
|
@@ -79,11 +76,12 @@ def initialize_models(device):
|
|
| 79 |
torch.cuda.empty_cache()
|
| 80 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 81 |
torch.backends.cudnn.benchmark = True
|
| 82 |
-
|
| 83 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
| 84 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
|
| 85 |
os.environ['SPCONV_ALGO'] = 'native'
|
| 86 |
os.environ['SPARSE_BACKEND'] = 'native'
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# Hugging Face ํ ํฐ ์ค์
|
| 89 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
@@ -385,24 +383,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 385 |
trial_id = gr.Textbox(visible=False)
|
| 386 |
output_buf = gr.State()
|
| 387 |
|
| 388 |
-
# Examples ๊ฐค๋ฌ๋ฆฌ๋ฅผ ๋งจ ์๋๋ก ์ด๋
|
| 389 |
-
if example_images:
|
| 390 |
-
gr.Markdown("""### Example Images""")
|
| 391 |
-
with gr.Row():
|
| 392 |
-
gallery = gr.Gallery(
|
| 393 |
-
value=example_images,
|
| 394 |
-
label="Click an image to use it",
|
| 395 |
-
show_label=True,
|
| 396 |
-
elem_id="gallery",
|
| 397 |
-
columns=12, # ํ ์ค์ 12๊ฐ
|
| 398 |
-
rows=2, # 2์ค
|
| 399 |
-
height=300, # ๋์ด ์กฐ์
|
| 400 |
-
allow_preview=True,
|
| 401 |
-
object_fit="contain" # ์ด๋ฏธ์ง ๋น์จ ์ ์ง
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
def load_example(evt: gr.SelectData):
|
| 407 |
selected_image = Image.open(example_images[evt.index])
|
| 408 |
trial_id_val, processed_image = preprocess_image(selected_image)
|
|
@@ -468,15 +448,10 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 468 |
|
| 469 |
if __name__ == "__main__":
|
| 470 |
try:
|
| 471 |
-
#
|
| 472 |
-
device = "
|
| 473 |
print(f"Using device: {device}")
|
| 474 |
|
| 475 |
-
# CUDA ๋ฉ๋ชจ๋ฆฌ ์ด๊ธฐํ
|
| 476 |
-
if torch.cuda.is_available():
|
| 477 |
-
torch.cuda.empty_cache()
|
| 478 |
-
torch.cuda.synchronize()
|
| 479 |
-
|
| 480 |
# ๋ชจ๋ธ ์ด๊ธฐํ
|
| 481 |
initialize_models(device)
|
| 482 |
|
|
@@ -490,15 +465,30 @@ if __name__ == "__main__":
|
|
| 490 |
except Exception as e:
|
| 491 |
print(f"Warning: Initial preprocessing test failed: {e}")
|
| 492 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
# Gradio ์ธํฐํ์ด์ค ์คํ
|
| 494 |
demo.queue() # ํ ๊ธฐ๋ฅ ํ์ฑํ
|
| 495 |
demo.launch(
|
| 496 |
-
allowed_paths=[PERSISTENT_DIR, TMP_DIR],
|
| 497 |
server_name="0.0.0.0",
|
| 498 |
server_port=7860,
|
| 499 |
show_error=True,
|
| 500 |
-
share=True
|
| 501 |
-
enable_queue=True # ํ ํ์ฑํ
|
| 502 |
)
|
| 503 |
|
| 504 |
except Exception as e:
|
|
|
|
| 40 |
g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
|
| 41 |
"JeffreyXiang/TRELLIS-image-large"
|
| 42 |
)
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# ์ด๋ฏธ์ง ์์ฑ ํ์ดํ๋ผ์ธ
|
| 45 |
print("Loading flux_pipe...")
|
|
|
|
| 64 |
g.translator = transformers_pipeline(
|
| 65 |
"translation",
|
| 66 |
model="Helsinki-NLP/opus-mt-ko-en",
|
| 67 |
+
device=device
|
| 68 |
)
|
| 69 |
print("Model initialization completed successfully")
|
| 70 |
|
|
|
|
| 76 |
torch.cuda.empty_cache()
|
| 77 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 78 |
torch.backends.cudnn.benchmark = True
|
|
|
|
| 79 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
| 80 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
|
| 81 |
os.environ['SPCONV_ALGO'] = 'native'
|
| 82 |
os.environ['SPARSE_BACKEND'] = 'native'
|
| 83 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # CUDA ์์
๋๊ธฐํ
|
| 84 |
+
|
| 85 |
|
| 86 |
# Hugging Face ํ ํฐ ์ค์
|
| 87 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 383 |
trial_id = gr.Textbox(visible=False)
|
| 384 |
output_buf = gr.State()
|
| 385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
def load_example(evt: gr.SelectData):
|
| 387 |
selected_image = Image.open(example_images[evt.index])
|
| 388 |
trial_id_val, processed_image = preprocess_image(selected_image)
|
|
|
|
| 448 |
|
| 449 |
if __name__ == "__main__":
|
| 450 |
try:
|
| 451 |
+
# CPU๋ก ์ด๊ธฐํ
|
| 452 |
+
device = "cpu"
|
| 453 |
print(f"Using device: {device}")
|
| 454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
# ๋ชจ๋ธ ์ด๊ธฐํ
|
| 456 |
initialize_models(device)
|
| 457 |
|
|
|
|
| 465 |
except Exception as e:
|
| 466 |
print(f"Warning: Initial preprocessing test failed: {e}")
|
| 467 |
|
| 468 |
+
# Examples ๊ฐค๋ฌ๋ฆฌ ์ค์
|
| 469 |
+
if example_images:
|
| 470 |
+
gr.Markdown("""### Example Images""")
|
| 471 |
+
with gr.Row():
|
| 472 |
+
gallery = gr.Gallery(
|
| 473 |
+
value=example_images,
|
| 474 |
+
label="Click an image to use it",
|
| 475 |
+
show_label=True,
|
| 476 |
+
elem_id="gallery",
|
| 477 |
+
columns=12, # ํ ์ค์ 12๊ฐ
|
| 478 |
+
rows=2, # 2์ค
|
| 479 |
+
height=300, # ๋์ด ์กฐ์
|
| 480 |
+
allow_preview=True,
|
| 481 |
+
object_fit="contain" # ์ด๋ฏธ์ง ๋น์จ ์ ์ง
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
# Gradio ์ธํฐํ์ด์ค ์คํ
|
| 485 |
demo.queue() # ํ ๊ธฐ๋ฅ ํ์ฑํ
|
| 486 |
demo.launch(
|
| 487 |
+
allowed_paths=[PERSISTENT_DIR, TMP_DIR],
|
| 488 |
server_name="0.0.0.0",
|
| 489 |
server_port=7860,
|
| 490 |
show_error=True,
|
| 491 |
+
share=True
|
|
|
|
| 492 |
)
|
| 493 |
|
| 494 |
except Exception as e:
|