Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,11 +19,50 @@ from trellis.representations import Gaussian, MeshExtractResult
|
|
| 19 |
from trellis.utils import render_utils, postprocessing_utils
|
| 20 |
from diffusers import FluxPipeline
|
| 21 |
from typing import Tuple, Dict, Any # Tuple import ์ถ๊ฐ
|
| 22 |
-
|
| 23 |
-
# ํ์ผ ์๋จ์ import ๋ฌธ ์์
|
| 24 |
import transformers
|
| 25 |
from transformers import pipeline as transformers_pipeline
|
| 26 |
-
from transformers import Pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# CUDA ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
|
| 28 |
torch.cuda.empty_cache()
|
| 29 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
@@ -71,7 +110,7 @@ class timer:
|
|
| 71 |
|
| 72 |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
| 73 |
trial_id = str(uuid.uuid4())
|
| 74 |
-
processed_image =
|
| 75 |
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
|
| 76 |
return trial_id, processed_image
|
| 77 |
|
|
@@ -169,7 +208,7 @@ def text_to_image(prompt: str, height: int, width: int, steps: int, scales: floa
|
|
| 169 |
|
| 170 |
# ํ๋กฌํํธ ์ ์ฒ๋ฆฌ
|
| 171 |
if contains_korean(prompt):
|
| 172 |
-
translated = translator(prompt)[0]['translation_text']
|
| 173 |
prompt = translated
|
| 174 |
|
| 175 |
# ํ๋กฌํํธ ํ์ ๊ฐ์
|
|
@@ -177,7 +216,7 @@ def text_to_image(prompt: str, height: int, width: int, steps: int, scales: floa
|
|
| 177 |
|
| 178 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
| 179 |
try:
|
| 180 |
-
generated_image = flux_pipe(
|
| 181 |
prompt=[formatted_prompt],
|
| 182 |
generator=torch.Generator().manual_seed(int(seed)),
|
| 183 |
num_inference_steps=int(steps),
|
|
@@ -330,35 +369,8 @@ if __name__ == "__main__":
|
|
| 330 |
print(f"Using device: {device}")
|
| 331 |
|
| 332 |
try:
|
| 333 |
-
#
|
| 334 |
-
|
| 335 |
-
"JeffreyXiang/TRELLIS-image-large"
|
| 336 |
-
)
|
| 337 |
-
trellis_pipeline.to(device)
|
| 338 |
-
|
| 339 |
-
# ์ด๋ฏธ์ง ์์ฑ ํ์ดํ๋ผ์ธ
|
| 340 |
-
flux_pipe = FluxPipeline.from_pretrained(
|
| 341 |
-
"black-forest-labs/FLUX.1-dev",
|
| 342 |
-
torch_dtype=torch.bfloat16,
|
| 343 |
-
device_map="balanced"
|
| 344 |
-
)
|
| 345 |
-
|
| 346 |
-
# Hyper-SD LoRA ๋ก๋
|
| 347 |
-
lora_path = hf_hub_download(
|
| 348 |
-
"ByteDance/Hyper-SD",
|
| 349 |
-
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
| 350 |
-
use_auth_token=HF_TOKEN
|
| 351 |
-
)
|
| 352 |
-
flux_pipe.load_lora_weights(lora_path)
|
| 353 |
-
flux_pipe.fuse_lora(lora_scale=0.125)
|
| 354 |
-
|
| 355 |
-
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
|
| 356 |
-
global translator
|
| 357 |
-
translator = transformers_pipeline(
|
| 358 |
-
"translation",
|
| 359 |
-
model="Helsinki-NLP/opus-mt-ko-en",
|
| 360 |
-
device=device
|
| 361 |
-
)
|
| 362 |
|
| 363 |
# CUDA ๋ฉ๋ชจ๋ฆฌ ์ด๊ธฐํ
|
| 364 |
if torch.cuda.is_available():
|
|
@@ -367,7 +379,7 @@ if __name__ == "__main__":
|
|
| 367 |
# ์ด๊ธฐ ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ ํ
์คํธ
|
| 368 |
try:
|
| 369 |
test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
|
| 370 |
-
trellis_pipeline.preprocess_image(test_image)
|
| 371 |
except Exception as e:
|
| 372 |
print(f"Warning: Initial preprocessing test failed: {e}")
|
| 373 |
|
|
|
|
| 19 |
from trellis.utils import render_utils, postprocessing_utils
|
| 20 |
from diffusers import FluxPipeline
|
| 21 |
from typing import Tuple, Dict, Any # Tuple import ์ถ๊ฐ
|
| 22 |
+
# ํ์ผ ์๋จ์ import ๋ฌธ
|
|
|
|
| 23 |
import transformers
|
| 24 |
from transformers import pipeline as transformers_pipeline
|
| 25 |
+
from transformers import Pipeline
|
| 26 |
+
|
| 27 |
+
# ์ ์ญ ๋ณ์ ์ด๊ธฐํ
|
| 28 |
+
class GlobalVars:
|
| 29 |
+
def __init__(self):
|
| 30 |
+
self.translator = None
|
| 31 |
+
self.trellis_pipeline = None
|
| 32 |
+
self.flux_pipe = None
|
| 33 |
+
|
| 34 |
+
g = GlobalVars()
|
| 35 |
+
|
| 36 |
+
def initialize_models(device):
|
| 37 |
+
# 3D ์์ฑ ํ์ดํ๋ผ์ธ
|
| 38 |
+
g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
|
| 39 |
+
"JeffreyXiang/TRELLIS-image-large"
|
| 40 |
+
)
|
| 41 |
+
g.trellis_pipeline.to(device)
|
| 42 |
+
|
| 43 |
+
# ์ด๋ฏธ์ง ์์ฑ ํ์ดํ๋ผ์ธ
|
| 44 |
+
g.flux_pipe = FluxPipeline.from_pretrained(
|
| 45 |
+
"black-forest-labs/FLUX.1-dev",
|
| 46 |
+
torch_dtype=torch.bfloat16,
|
| 47 |
+
device_map="balanced"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Hyper-SD LoRA ๋ก๋
|
| 51 |
+
lora_path = hf_hub_download(
|
| 52 |
+
"ByteDance/Hyper-SD",
|
| 53 |
+
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
| 54 |
+
use_auth_token=HF_TOKEN
|
| 55 |
+
)
|
| 56 |
+
g.flux_pipe.load_lora_weights(lora_path)
|
| 57 |
+
g.flux_pipe.fuse_lora(lora_scale=0.125)
|
| 58 |
+
|
| 59 |
+
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
|
| 60 |
+
g.translator = transformers_pipeline(
|
| 61 |
+
"translation",
|
| 62 |
+
model="Helsinki-NLP/opus-mt-ko-en",
|
| 63 |
+
device=device
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
# CUDA ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
|
| 67 |
torch.cuda.empty_cache()
|
| 68 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
| 110 |
|
| 111 |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
| 112 |
trial_id = str(uuid.uuid4())
|
| 113 |
+
processed_image = g.trellis_pipeline.preprocess_image(image)
|
| 114 |
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
|
| 115 |
return trial_id, processed_image
|
| 116 |
|
|
|
|
| 208 |
|
| 209 |
# ํ๋กฌํํธ ์ ์ฒ๋ฆฌ
|
| 210 |
if contains_korean(prompt):
|
| 211 |
+
translated = g.translator(prompt)[0]['translation_text']
|
| 212 |
prompt = translated
|
| 213 |
|
| 214 |
# ํ๋กฌํํธ ํ์ ๊ฐ์
|
|
|
|
| 216 |
|
| 217 |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
| 218 |
try:
|
| 219 |
+
generated_image = g.flux_pipe(
|
| 220 |
prompt=[formatted_prompt],
|
| 221 |
generator=torch.Generator().manual_seed(int(seed)),
|
| 222 |
num_inference_steps=int(steps),
|
|
|
|
| 369 |
print(f"Using device: {device}")
|
| 370 |
|
| 371 |
try:
|
| 372 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ
|
| 373 |
+
initialize_models(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
# CUDA ๋ฉ๋ชจ๋ฆฌ ์ด๊ธฐํ
|
| 376 |
if torch.cuda.is_available():
|
|
|
|
| 379 |
# ์ด๊ธฐ ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ ํ
์คํธ
|
| 380 |
try:
|
| 381 |
test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
|
| 382 |
+
g.trellis_pipeline.preprocess_image(test_image)
|
| 383 |
except Exception as e:
|
| 384 |
print(f"Warning: Initial preprocessing test failed: {e}")
|
| 385 |
|