Spaces:
Paused
Paused
| import gradio as gr | |
| import spaces | |
| from gradio_litmodel3d import LitModel3D | |
| import os | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| import imageio | |
| import uuid | |
| from easydict import EasyDict as edict | |
| from PIL import Image | |
| from trellis.pipelines import TrellisImageTo3DPipeline | |
| from trellis.representations import Gaussian, MeshExtractResult | |
| from trellis.utils import render_utils, postprocessing_utils | |
| from transformers import pipeline as translation_pipeline | |
| from diffusers import FluxPipeline | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = "/tmp/Trellis-demo" | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| def initialize_models(): | |
| global pipeline, translator, flux_pipe | |
| try: | |
| # GPU ๋ฉ๋ชจ๋ฆฌ ์ด๊ธฐํ | |
| torch.cuda.empty_cache() | |
| # GPU ์ฌ์ฉ ๊ฐ๋ฅ ์ฌ๋ถ ํ์ธ | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Trellis ํ์ดํ๋ผ์ธ ์ด๊ธฐํ | |
| pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
| pipeline.to(device) | |
| # ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ | |
| translator = translation_pipeline( | |
| "translation", | |
| model="Helsinki-NLP/opus-mt-ko-en", | |
| device=0 if device=="cuda" else -1 | |
| ) | |
| # Flux ํ์ดํ๋ผ์ธ ์ด๊ธฐํ | |
| flux_pipe = FluxPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=torch.float16 if device=="cuda" else torch.float32 | |
| ) | |
| if device == "cuda": | |
| flux_pipe.enable_model_cpu_offload() | |
| return True | |
| except Exception as e: | |
| print(f"Model initialization error: {str(e)}") | |
| torch.cuda.empty_cache() | |
| return False | |
| def translate_if_korean(text): | |
| if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text): | |
| translated = translator(text)[0]['translation_text'] | |
| return translated | |
| return text | |
| def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]: | |
| trial_id = str(uuid.uuid4()) | |
| processed_image = pipeline.preprocess_image(image) | |
| processed_image.save(f"{TMP_DIR}/{trial_id}.png") | |
| return trial_id, processed_image | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: | |
| return { | |
| 'gaussian': { | |
| **gs.init_params, | |
| '_xyz': gs._xyz.cpu().numpy(), | |
| '_features_dc': gs._features_dc.cpu().numpy(), | |
| '_scaling': gs._scaling.cpu().numpy(), | |
| '_rotation': gs._rotation.cpu().numpy(), | |
| '_opacity': gs._opacity.cpu().numpy(), | |
| }, | |
| 'mesh': { | |
| 'vertices': mesh.vertices.cpu().numpy(), | |
| 'faces': mesh.faces.cpu().numpy(), | |
| }, | |
| 'trial_id': trial_id, | |
| } | |
| def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
| gs = Gaussian( | |
| aabb=state['gaussian']['aabb'], | |
| sh_degree=state['gaussian']['sh_degree'], | |
| mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
| scaling_bias=state['gaussian']['scaling_bias'], | |
| opacity_bias=state['gaussian']['opacity_bias'], | |
| scaling_activation=state['gaussian']['scaling_activation'], | |
| ) | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
| mesh = edict( | |
| vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
| faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
| ) | |
| return gs, mesh, state['trial_id'] | |
| def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, | |
| ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int): | |
| try: | |
| torch.cuda.empty_cache() | |
| if randomize_seed: | |
| seed = np.random.randint(0, MAX_SEED) | |
| input_image = Image.open(f"{TMP_DIR}/{trial_id}.png") | |
| with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()): | |
| with torch.no_grad(): | |
| outputs = pipeline.run( | |
| input_image, | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| } | |
| ) | |
| # ๋น๋์ค ๋ ๋๋ง | |
| video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
| video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
| video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
| trial_id = str(uuid.uuid4()) | |
| video_path = f"{TMP_DIR}/{trial_id}.mp4" | |
| os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
| imageio.mimsave(video_path, video, fps=15) | |
| state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id) | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| return state, video_path | |
| except Exception as e: | |
| print(f"Error in image_to_3d: {str(e)}") | |
| torch.cuda.empty_cache() | |
| raise e | |
| def generate_image_from_text(prompt, height, width, guidance_scale, num_steps): | |
| # ๊ธฐ๋ณธ ํ๋กฌํํธ๋ฅผ ์ถ๊ฐ | |
| base_prompt = "wbgmsst, 3D, white background" | |
| # ์ฌ์ฉ์ ํ๋กฌํํธ๋ฅผ ๋ฒ์ญ (ํ๊ตญ์ด์ธ ๊ฒฝ์ฐ) | |
| translated_prompt = translate_if_korean(prompt) | |
| # ์ต์ข ํ๋กฌํํธ ์กฐํฉ | |
| final_prompt = f"{translated_prompt}, {base_prompt}" | |
| with torch.inference_mode(): | |
| image = flux_pipe( | |
| prompt=[final_prompt], | |
| height=height, | |
| width=width, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_steps | |
| ).images[0] | |
| return image | |
| def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: | |
| gs, mesh, trial_id = unpack_state(state) | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = f"{TMP_DIR}/{trial_id}.glb" | |
| glb.export(glb_path) | |
| return glb_path, glb_path | |
| def activate_button() -> gr.Button: | |
| return gr.Button(interactive=True) | |
| def deactivate_button() -> gr.Button: | |
| return gr.Button(interactive=False) | |
| css = """ | |
| footer { | |
| visibility: hidden; | |
| } | |
| """ | |
| with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: | |
| gr.Markdown(""" | |
| # Craft3D : 3D Asset Creation & Text-to-Image Generation | |
| """) | |
| with gr.Tabs(): | |
| with gr.TabItem("Image to 3D"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300) | |
| with gr.Accordion(label="Generation Settings", open=False): | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| gr.Markdown("Stage 2: Structured Latent Generation") | |
| with gr.Row(): | |
| slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
| slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| generate_btn = gr.Button("Generate") | |
| with gr.Accordion(label="GLB Extraction Settings", open=False): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
| model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300) | |
| download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
| with gr.TabItem("Text to Image"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_prompt = gr.Textbox( | |
| label="Text Prompt", | |
| placeholder="Enter your image description...", | |
| lines=3 | |
| ) | |
| with gr.Row(): | |
| txt2img_height = gr.Slider(256, 1024, value=512, step=64, label="Height") | |
| txt2img_width = gr.Slider(256, 1024, value=512, step=64, label="Width") | |
| with gr.Row(): | |
| guidance_scale = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale") | |
| num_steps = gr.Slider(1, 50, value=20, label="Number of Steps") | |
| generate_txt2img_btn = gr.Button("Generate Image") | |
| with gr.Column(): | |
| txt2img_output = gr.Image(label="Generated Image") | |
| trial_id = gr.Textbox(visible=False) | |
| output_buf = gr.State() | |
| # Example images | |
| with gr.Row(): | |
| examples = gr.Examples( | |
| examples=[ | |
| f'assets/example_image/{image}' | |
| for image in os.listdir("assets/example_image") | |
| ], | |
| inputs=[image_prompt], | |
| fn=preprocess_image, | |
| outputs=[trial_id, image_prompt], | |
| run_on_click=True, | |
| examples_per_page=64, | |
| ) | |
| # Handlers | |
| image_prompt.upload( | |
| preprocess_image, | |
| inputs=[image_prompt], | |
| outputs=[trial_id, image_prompt], | |
| ) | |
| image_prompt.clear( | |
| lambda: '', | |
| outputs=[trial_id], | |
| ) | |
| generate_btn.click( | |
| image_to_3d, | |
| inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
| outputs=[output_buf, video_output], | |
| ).then( | |
| activate_button, | |
| outputs=[extract_glb_btn], | |
| ) | |
| video_output.clear( | |
| deactivate_button, | |
| outputs=[extract_glb_btn], | |
| ) | |
| extract_glb_btn.click( | |
| extract_glb, | |
| inputs=[output_buf, mesh_simplify, texture_size], | |
| outputs=[model_output, download_glb], | |
| ).then( | |
| activate_button, | |
| outputs=[download_glb], | |
| ) | |
| model_output.clear( | |
| deactivate_button, | |
| outputs=[download_glb], | |
| ) | |
| # Text to Image ํธ๋ค๋ฌ | |
| generate_txt2img_btn.click( | |
| generate_image_from_text, | |
| inputs=[text_prompt, txt2img_height, txt2img_width, guidance_scale, num_steps], | |
| outputs=[txt2img_output] | |
| ) | |
| if __name__ == "__main__": | |
| # ์ด๊ธฐ GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| # ๋ชจ๋ธ ์ด๊ธฐํ ํ์ธ | |
| if not initialize_models(): | |
| print("Failed to initialize models") | |
| exit(1) | |
| try: | |
| # rembg ์ฌ์ ๋ก๋ ์๋ | |
| test_image = Image.fromarray(np.zeros((256, 256, 3), dtype=np.uint8)) | |
| pipeline.preprocess_image(test_image) | |
| except Exception as e: | |
| print(f"Warning: Failed to preload rembg: {str(e)}") | |
| # Gradio ์ฑ ์คํ | |
| demo.queue(concurrency_count=1).launch( | |
| share=True, | |
| enable_queue=True, | |
| max_threads=1 | |
| ) |