Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,431 +1,35 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
-
import torch
|
| 4 |
-
import diffusers
|
| 5 |
-
import transformers
|
| 6 |
-
import copy
|
| 7 |
-
import random
|
| 8 |
-
import numpy as np
|
| 9 |
-
import torchvision.transforms as T
|
| 10 |
-
import math
|
| 11 |
import os
|
| 12 |
-
import
|
| 13 |
-
|
| 14 |
-
from
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
# insert LoRA
|
| 40 |
-
lora_config = LoraConfig(
|
| 41 |
-
r=args.lora_rank,
|
| 42 |
-
lora_alpha=args.lora_alpha,
|
| 43 |
-
init_lora_weights="gaussian",
|
| 44 |
-
target_modules=[
|
| 45 |
-
'x_embedder',
|
| 46 |
-
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
|
| 47 |
-
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
|
| 48 |
-
'ff.net.0.proj', 'ff.net.2', 'ff_context.net.0.proj', 'ff_context.net.2',
|
| 49 |
-
'norm1_context.linear', 'norm1.linear', 'norm.linear', 'proj_mlp', 'proj_out'
|
| 50 |
-
]
|
| 51 |
-
)
|
| 52 |
-
transformer.add_adapter(lora_config, adapter_name='vtryon_lora')
|
| 53 |
-
transformer.add_adapter(lora_config, adapter_name='garment_lora')
|
| 54 |
-
|
| 55 |
-
with safe_open('OmniTry/omnitry_v1_unified.safetensors', framework="pt") as f:
|
| 56 |
-
lora_weights = {k: f.get_tensor(k) for k in f.keys()}
|
| 57 |
-
transformer.load_state_dict(lora_weights, strict=False)
|
| 58 |
-
|
| 59 |
-
# hack lora forward
|
| 60 |
-
def create_hacked_forward(module):
|
| 61 |
-
|
| 62 |
-
def lora_forward(self, active_adapter, x, *args, **kwargs):
|
| 63 |
-
result = self.base_layer(x, *args, **kwargs)
|
| 64 |
-
if active_adapter is not None:
|
| 65 |
-
lora_A = self.lora_A[active_adapter]
|
| 66 |
-
lora_B = self.lora_B[active_adapter]
|
| 67 |
-
dropout = self.lora_dropout[active_adapter]
|
| 68 |
-
scaling = self.scaling[active_adapter]
|
| 69 |
-
x = x.to(lora_A.weight.dtype)
|
| 70 |
-
result = result + lora_B(lora_A(dropout(x))) * scaling
|
| 71 |
-
return result
|
| 72 |
-
|
| 73 |
-
def hacked_lora_forward(self, x, *args, **kwargs):
|
| 74 |
-
return torch.cat((
|
| 75 |
-
lora_forward(self, 'vtryon_lora', x[:1], *args, **kwargs),
|
| 76 |
-
lora_forward(self, 'garment_lora', x[1:], *args, **kwargs),
|
| 77 |
-
), dim=0)
|
| 78 |
-
|
| 79 |
-
return hacked_lora_forward.__get__(module, type(module))
|
| 80 |
-
|
| 81 |
-
for n, m in transformer.named_modules():
|
| 82 |
-
if isinstance(m, peft.tuners.lora.layer.Linear):
|
| 83 |
-
m.forward = create_hacked_forward(m)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def seed_everything(seed=0):
|
| 87 |
-
random.seed(seed)
|
| 88 |
-
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 89 |
-
np.random.seed(seed)
|
| 90 |
-
torch.manual_seed(seed)
|
| 91 |
-
torch.cuda.manual_seed(seed)
|
| 92 |
-
torch.cuda.manual_seed_all(seed)
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
# Category mapping with sample images
|
| 96 |
-
CATEGORY_SAMPLES = {
|
| 97 |
-
'top': 'top.png',
|
| 98 |
-
'bottom': 'bottom.png',
|
| 99 |
-
'dress': 'dress.jpg',
|
| 100 |
-
'hat': 'hat.png',
|
| 101 |
-
'sunglasses': 'sunglasses.png',
|
| 102 |
-
'glasses': 'glasses.png',
|
| 103 |
-
'necklace': 'necklace.png',
|
| 104 |
-
'earrings': 'earrings.png',
|
| 105 |
-
'bracelet': 'bracelet.png',
|
| 106 |
-
'ring': 'ring.png',
|
| 107 |
-
'tie': 'tie.png',
|
| 108 |
-
'bow tie': 'bow tie.png',
|
| 109 |
-
'belt': 'belt.png',
|
| 110 |
-
'shoe': 'shoe.png',
|
| 111 |
-
'bag': 'bag.png'
|
| 112 |
-
}
|
| 113 |
-
|
| 114 |
-
# Person sample images
|
| 115 |
-
PERSON_SAMPLES = ['woman.png', 'man.png']
|
| 116 |
-
|
| 117 |
-
def load_sample_image(category):
|
| 118 |
-
"""Load sample image for selected category"""
|
| 119 |
-
if category and category in CATEGORY_SAMPLES:
|
| 120 |
-
img_path = CATEGORY_SAMPLES[category]
|
| 121 |
-
if os.path.exists(img_path):
|
| 122 |
-
return Image.open(img_path)
|
| 123 |
-
return None
|
| 124 |
-
|
| 125 |
-
def load_random_person():
|
| 126 |
-
"""Load random person image on initialization"""
|
| 127 |
-
person_img = random.choice(PERSON_SAMPLES)
|
| 128 |
-
if os.path.exists(person_img):
|
| 129 |
-
return Image.open(person_img)
|
| 130 |
-
return None
|
| 131 |
-
|
| 132 |
-
def create_category_html():
|
| 133 |
-
"""Create HTML for category thumbnails"""
|
| 134 |
-
html = '<div class="category-container">'
|
| 135 |
-
for category, img_file in CATEGORY_SAMPLES.items():
|
| 136 |
-
if os.path.exists(img_file):
|
| 137 |
-
# Create base64 encoded thumbnail for each category
|
| 138 |
-
import base64
|
| 139 |
-
from io import BytesIO
|
| 140 |
-
img = Image.open(img_file)
|
| 141 |
-
# Resize for thumbnail
|
| 142 |
-
img.thumbnail((80, 80), Image.Resampling.LANCZOS)
|
| 143 |
-
buffered = BytesIO()
|
| 144 |
-
img.save(buffered, format="PNG")
|
| 145 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 146 |
-
|
| 147 |
-
html += f'''
|
| 148 |
-
<div class="category-item" data-category="{category}">
|
| 149 |
-
<img src="data:image/png;base64,{img_str}" alt="{category}">
|
| 150 |
-
<span>{category.title()}</span>
|
| 151 |
-
</div>
|
| 152 |
-
'''
|
| 153 |
-
html += '</div>'
|
| 154 |
-
return html
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
@spaces.GPU
|
| 158 |
-
def generate(person_image, object_image, object_class, steps, guidance_scale, seed):
|
| 159 |
-
if seed == -1:
|
| 160 |
-
seed = random.randint(0, 2**32 - 1)
|
| 161 |
-
seed_everything(seed)
|
| 162 |
-
|
| 163 |
-
max_area = 1024 * 1024
|
| 164 |
-
oW, oH = person_image.width, person_image.height
|
| 165 |
-
ratio = math.sqrt(max_area / (oW * oH))
|
| 166 |
-
ratio = min(1, ratio)
|
| 167 |
-
tW, tH = int(oW * ratio) // 16 * 16, int(oH * ratio) // 16 * 16
|
| 168 |
-
transform = T.Compose([
|
| 169 |
-
T.Resize((tH, tW)),
|
| 170 |
-
T.ToTensor(),
|
| 171 |
-
])
|
| 172 |
-
person_image = transform(person_image)
|
| 173 |
-
|
| 174 |
-
ratio = min(tW / object_image.width, tH / object_image.height)
|
| 175 |
-
transform = T.Compose([
|
| 176 |
-
T.Resize((int(object_image.height * ratio), int(object_image.width * ratio))),
|
| 177 |
-
T.ToTensor(),
|
| 178 |
-
])
|
| 179 |
-
object_image_padded = torch.ones_like(person_image)
|
| 180 |
-
object_image = transform(object_image)
|
| 181 |
-
new_h, new_w = object_image.shape[1], object_image.shape[2]
|
| 182 |
-
min_x = (tW - new_w) // 2
|
| 183 |
-
min_y = (tH - new_h) // 2
|
| 184 |
-
object_image_padded[:, min_y: min_y + new_h, min_x: min_x + new_w] = object_image
|
| 185 |
-
|
| 186 |
-
prompts = [args.object_map[object_class]] * 2
|
| 187 |
-
img_cond = torch.stack([person_image, object_image_padded]).to(dtype=weight_dtype, device=device)
|
| 188 |
-
mask = torch.zeros_like(img_cond).to(img_cond)
|
| 189 |
-
|
| 190 |
-
with torch.no_grad():
|
| 191 |
-
img = pipeline(
|
| 192 |
-
prompt=prompts,
|
| 193 |
-
height=tH,
|
| 194 |
-
width=tW,
|
| 195 |
-
img_cond=img_cond,
|
| 196 |
-
mask=mask,
|
| 197 |
-
guidance_scale=guidance_scale,
|
| 198 |
-
num_inference_steps=steps,
|
| 199 |
-
generator=torch.Generator(device).manual_seed(seed),
|
| 200 |
-
).images[0]
|
| 201 |
-
|
| 202 |
-
return img
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
# Custom CSS
|
| 206 |
-
custom_css = """
|
| 207 |
-
/* 전체 배경 */
|
| 208 |
-
.gradio-container {
|
| 209 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 210 |
-
font-family: 'Inter', sans-serif;
|
| 211 |
-
}
|
| 212 |
-
|
| 213 |
-
/* Category thumbnails container */
|
| 214 |
-
.category-container {
|
| 215 |
-
display: flex;
|
| 216 |
-
flex-wrap: wrap;
|
| 217 |
-
gap: 15px;
|
| 218 |
-
justify-content: center;
|
| 219 |
-
margin: 20px 0;
|
| 220 |
-
padding: 20px;
|
| 221 |
-
background: rgba(255, 255, 255, 0.1);
|
| 222 |
-
border-radius: 15px;
|
| 223 |
-
backdrop-filter: blur(10px);
|
| 224 |
-
}
|
| 225 |
-
|
| 226 |
-
.category-item {
|
| 227 |
-
display: flex;
|
| 228 |
-
flex-direction: column;
|
| 229 |
-
align-items: center;
|
| 230 |
-
cursor: pointer;
|
| 231 |
-
padding: 10px;
|
| 232 |
-
border-radius: 10px;
|
| 233 |
-
background: rgba(255, 255, 255, 0.9);
|
| 234 |
-
transition: all 0.3s ease;
|
| 235 |
-
min-width: 90px;
|
| 236 |
-
}
|
| 237 |
-
|
| 238 |
-
.category-item:hover {
|
| 239 |
-
transform: translateY(-5px);
|
| 240 |
-
box-shadow: 0 5px 20px rgba(0, 0, 0, 0.2);
|
| 241 |
-
background: white;
|
| 242 |
-
}
|
| 243 |
-
|
| 244 |
-
.category-item.selected {
|
| 245 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 246 |
-
color: white;
|
| 247 |
-
}
|
| 248 |
-
|
| 249 |
-
.category-item img {
|
| 250 |
-
width: 60px;
|
| 251 |
-
height: 60px;
|
| 252 |
-
object-fit: contain;
|
| 253 |
-
margin-bottom: 5px;
|
| 254 |
-
}
|
| 255 |
-
|
| 256 |
-
.category-item span {
|
| 257 |
-
font-size: 0.85em;
|
| 258 |
-
text-align: center;
|
| 259 |
-
font-weight: 500;
|
| 260 |
-
}
|
| 261 |
-
|
| 262 |
-
/* === 플레이스홀더 전부 제거 === */
|
| 263 |
-
.gr-image svg,
|
| 264 |
-
.gr-image [data-testid*="placeholder"],
|
| 265 |
-
.gr-image [class*="placeholder"],
|
| 266 |
-
.gr-image [aria-label*="placeholder"],
|
| 267 |
-
.gr-image [class*="svelte"][class*="placeholder"],
|
| 268 |
-
.gr-image .absolute.inset-0.flex.items-center.justify-center,
|
| 269 |
-
.gr-image .flex.items-center.justify-center svg {
|
| 270 |
-
display: none !important;
|
| 271 |
-
visibility: hidden !important;
|
| 272 |
-
}
|
| 273 |
-
.gr-image [class*="overlay"],
|
| 274 |
-
.gr-image .fixed.inset-0,
|
| 275 |
-
.gr-image .absolute.inset-0 {
|
| 276 |
-
pointer-events: none !important;
|
| 277 |
-
}
|
| 278 |
-
|
| 279 |
-
/* 이미지 업로드 영역 */
|
| 280 |
-
.gr-image .wrap { background: transparent !important; min-height: 400px !important; }
|
| 281 |
-
.gr-image .upload-container {
|
| 282 |
-
min-height: 400px !important;
|
| 283 |
-
border: 3px dashed rgba(102, 126, 234, 0.4) !important;
|
| 284 |
-
border-radius: 12px !important;
|
| 285 |
-
background: linear-gradient(135deg, rgba(248, 250, 252, 0.5) 0%, rgba(241, 245, 249, 0.5) 100%) !important;
|
| 286 |
-
position: relative !important;
|
| 287 |
-
}
|
| 288 |
-
/* 이미지 있을 때 */
|
| 289 |
-
.gr-image:has(img) .upload-container { border: none !important; background: transparent !important; }
|
| 290 |
-
/* 안내 텍스트 */
|
| 291 |
-
.gr-image .upload-container::after {
|
| 292 |
-
content: "Click or Drag to Upload";
|
| 293 |
-
position: absolute; top: 50%; left: 50%;
|
| 294 |
-
transform: translate(-50%, -50%);
|
| 295 |
-
color: rgba(102, 126, 234, 0.7);
|
| 296 |
-
font-size: 1.05em; font-weight: 500;
|
| 297 |
-
pointer-events: none;
|
| 298 |
-
}
|
| 299 |
-
.gr-image:has(img) .upload-container::after { display: none !important; }
|
| 300 |
-
/* 업로드 이미지 */
|
| 301 |
-
.gr-image img { border-radius: 12px !important; position: relative !important; z-index: 10 !important; }
|
| 302 |
-
|
| 303 |
-
/* 버튼 스타일 */
|
| 304 |
-
.gr-button-primary {
|
| 305 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 306 |
-
color: white !important; border: none !important;
|
| 307 |
-
padding: 15px 40px !important; font-size: 1.2em !important;
|
| 308 |
-
border-radius: 50px !important; cursor: pointer !important;
|
| 309 |
-
}
|
| 310 |
-
|
| 311 |
-
/* Radio button styling for categories */
|
| 312 |
-
.gr-radio {
|
| 313 |
-
display: none !important;
|
| 314 |
-
}
|
| 315 |
-
"""
|
| 316 |
-
|
| 317 |
-
if __name__ == '__main__':
|
| 318 |
-
|
| 319 |
-
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 320 |
-
with gr.Column(elem_id="header"):
|
| 321 |
-
gr.HTML("""
|
| 322 |
-
<h1 style="text-align: center; color: white; margin: 20px 0;">
|
| 323 |
-
✨ CodiFit-AI Virtual Try-On ✨
|
| 324 |
-
</h1>
|
| 325 |
-
<p style="text-align: center; color: rgba(255,255,255,0.9); margin-bottom: 30px;">
|
| 326 |
-
Experience the future of fashion with AI-powered virtual clothing try-on
|
| 327 |
-
</p>
|
| 328 |
-
""")
|
| 329 |
-
|
| 330 |
-
# Category selector with thumbnails
|
| 331 |
-
gr.Markdown("### Select Fashion Category")
|
| 332 |
-
with gr.Row():
|
| 333 |
-
category_selector = gr.Radio(
|
| 334 |
-
choices=list(CATEGORY_SAMPLES.keys()),
|
| 335 |
-
value='top',
|
| 336 |
-
label="Fashion Categories",
|
| 337 |
-
elem_id="category_radio",
|
| 338 |
-
visible=False # Hide default radio buttons
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
# Display category thumbnails
|
| 342 |
-
category_html = gr.HTML(create_category_html())
|
| 343 |
-
|
| 344 |
-
with gr.Row(equal_height=True):
|
| 345 |
-
with gr.Column(scale=1):
|
| 346 |
-
person_image = gr.Image(
|
| 347 |
-
type="pil",
|
| 348 |
-
label="Upload Person Photo",
|
| 349 |
-
height=500,
|
| 350 |
-
interactive=True,
|
| 351 |
-
value=load_random_person() # Load random person on init
|
| 352 |
-
)
|
| 353 |
-
|
| 354 |
-
with gr.Column(scale=1):
|
| 355 |
-
object_image = gr.Image(
|
| 356 |
-
type="pil",
|
| 357 |
-
label="Upload Object Image",
|
| 358 |
-
height=400,
|
| 359 |
-
interactive=True,
|
| 360 |
-
value=load_sample_image('top') # Load default top image
|
| 361 |
-
)
|
| 362 |
-
object_class = gr.Dropdown(
|
| 363 |
-
label='Selected Object Category',
|
| 364 |
-
choices=list(args.object_map.keys()),
|
| 365 |
-
value='top',
|
| 366 |
-
interactive=True
|
| 367 |
-
)
|
| 368 |
-
run_button = gr.Button(value="🚀 Generate Try-On", variant='primary')
|
| 369 |
-
|
| 370 |
-
with gr.Column(scale=1):
|
| 371 |
-
image_out = gr.Image(type="pil", label="Virtual Try-On Result", height=500, interactive=False)
|
| 372 |
-
|
| 373 |
-
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 374 |
-
with gr.Row():
|
| 375 |
-
guidance_scale = gr.Slider(label="🎯 Guidance Scale", minimum=1, maximum=50, value=30, step=0.1)
|
| 376 |
-
steps = gr.Slider(label="🔄 Inference Steps", minimum=1, maximum=50, value=20, step=1)
|
| 377 |
-
seed = gr.Number(label="🎲 Random Seed", value=-1, precision=0)
|
| 378 |
-
|
| 379 |
-
# JavaScript for category selection interaction
|
| 380 |
-
demo.load(None, None, None, js="""
|
| 381 |
-
function() {
|
| 382 |
-
// Add click handlers to category items
|
| 383 |
-
document.querySelectorAll('.category-item').forEach(item => {
|
| 384 |
-
item.addEventListener('click', function() {
|
| 385 |
-
// Remove selected class from all items
|
| 386 |
-
document.querySelectorAll('.category-item').forEach(i =>
|
| 387 |
-
i.classList.remove('selected')
|
| 388 |
-
);
|
| 389 |
-
// Add selected class to clicked item
|
| 390 |
-
this.classList.add('selected');
|
| 391 |
-
|
| 392 |
-
// Get category name
|
| 393 |
-
const category = this.dataset.category;
|
| 394 |
-
|
| 395 |
-
// Trigger category selection (would need proper Gradio event handling)
|
| 396 |
-
console.log('Selected category:', category);
|
| 397 |
-
});
|
| 398 |
-
});
|
| 399 |
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
# Handle category selection
|
| 406 |
-
def on_category_select(category):
|
| 407 |
-
"""Update object image and class when category is selected"""
|
| 408 |
-
sample_img = load_sample_image(category)
|
| 409 |
-
return sample_img, category
|
| 410 |
-
|
| 411 |
-
# Connect category selector to update object image and class
|
| 412 |
-
category_selector.change(
|
| 413 |
-
fn=on_category_select,
|
| 414 |
-
inputs=[category_selector],
|
| 415 |
-
outputs=[object_image, object_class]
|
| 416 |
-
)
|
| 417 |
-
|
| 418 |
-
# Manual category selection through radio (hidden but functional)
|
| 419 |
-
def update_from_thumbnail(evt: gr.SelectData):
|
| 420 |
-
category = list(CATEGORY_SAMPLES.keys())[evt.index]
|
| 421 |
-
sample_img = load_sample_image(category)
|
| 422 |
-
return sample_img, category
|
| 423 |
-
|
| 424 |
-
# Run generation
|
| 425 |
-
run_button.click(
|
| 426 |
-
generate,
|
| 427 |
-
inputs=[person_image, object_image, object_class, steps, guidance_scale, seed],
|
| 428 |
-
outputs=[image_out]
|
| 429 |
-
)
|
| 430 |
|
| 431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from tempfile import NamedTemporaryFile
|
| 5 |
+
|
| 6 |
+
def main():
|
| 7 |
+
try:
|
| 8 |
+
# Get the code from secrets
|
| 9 |
+
code = os.environ.get("MAIN_CODE")
|
| 10 |
+
|
| 11 |
+
if not code:
|
| 12 |
+
st.error("⚠️ The application code wasn't found in secrets. Please add the MAIN_CODE secret.")
|
| 13 |
+
return
|
| 14 |
+
|
| 15 |
+
# Create a temporary Python file
|
| 16 |
+
with NamedTemporaryFile(suffix='.py', delete=False, mode='w') as tmp:
|
| 17 |
+
tmp.write(code)
|
| 18 |
+
tmp_path = tmp.name
|
| 19 |
+
|
| 20 |
+
# Execute the code
|
| 21 |
+
exec(compile(code, tmp_path, 'exec'), globals())
|
| 22 |
+
|
| 23 |
+
# Clean up the temporary file
|
| 24 |
+
try:
|
| 25 |
+
os.unlink(tmp_path)
|
| 26 |
+
except:
|
| 27 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
except Exception as e:
|
| 30 |
+
st.error(f"⚠️ Error loading or executing the application: {str(e)}")
|
| 31 |
+
import traceback
|
| 32 |
+
st.code(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
if __name__ == "__main__":
|
| 35 |
+
main()
|