Upload 2 files
Browse files- app.py +46 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from langchain.llms import OpenAI
|
| 3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 4 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 5 |
+
from langchain.vectorstores import Chroma
|
| 6 |
+
from langchain.chains import RetrievalQA
|
| 7 |
+
|
| 8 |
+
def generate_response(uploaded_file, openai_api_key, query_text):
|
| 9 |
+
# Load document if file is uploaded
|
| 10 |
+
if uploaded_file is not None:
|
| 11 |
+
documents = [uploaded_file.read().decode()]
|
| 12 |
+
# Split documents into chunks
|
| 13 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
| 14 |
+
texts = text_splitter.create_documents(documents)
|
| 15 |
+
# Select embeddings
|
| 16 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
| 17 |
+
# Create a vectorstore from documents
|
| 18 |
+
db = Chroma.from_documents(texts, embeddings)
|
| 19 |
+
# Create retriever interface
|
| 20 |
+
retriever = db.as_retriever()
|
| 21 |
+
# Create QA chain
|
| 22 |
+
qa = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key=openai_api_key), chain_type='stuff', retriever=retriever)
|
| 23 |
+
return qa.run(query_text)
|
| 24 |
+
|
| 25 |
+
# Page title
|
| 26 |
+
st.set_page_config(page_title='π¦π Ask the Doc App')
|
| 27 |
+
st.title('π¦π Ask the Doc App')
|
| 28 |
+
|
| 29 |
+
# File upload
|
| 30 |
+
uploaded_file = st.file_uploader('Upload an article', type='txt')
|
| 31 |
+
# Query text
|
| 32 |
+
query_text = st.text_input('Enter your question:', placeholder = 'Please provide a short summary.', disabled=not uploaded_file)
|
| 33 |
+
|
| 34 |
+
# Form input and query
|
| 35 |
+
result = []
|
| 36 |
+
with st.form('myform', clear_on_submit=True):
|
| 37 |
+
openai_api_key = st.text_input('OpenAI API Key', type='password', disabled=not (uploaded_file and query_text))
|
| 38 |
+
submitted = st.form_submit_button('Submit', disabled=not(uploaded_file and query_text))
|
| 39 |
+
if submitted and openai_api_key.startswith('sk-'):
|
| 40 |
+
with st.spinner('Calculating...'):
|
| 41 |
+
response = generate_response(uploaded_file, openai_api_key, query_text)
|
| 42 |
+
result.append(response)
|
| 43 |
+
del openai_api_key
|
| 44 |
+
|
| 45 |
+
if len(result):
|
| 46 |
+
st.info(response)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
langchain-community
|
| 3 |
+
openai
|
| 4 |
+
chromadb
|
| 5 |
+
tiktoken
|