|
|
import os
|
|
|
import sys
|
|
|
|
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
|
|
|
|
|
import torch
|
|
|
from transformers import MT5TokenizerFast, MT5ForConditionalGeneration
|
|
|
from datasets import load_dataset
|
|
|
from peft import LoraConfig, get_peft_model, TaskType
|
|
|
from dotenv import load_dotenv
|
|
|
import wandb
|
|
|
import json
|
|
|
from utils.helper import TextPreprocessor
|
|
|
from utils.trainer import train_model
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
|
class MT5Finetuner:
|
|
|
"""Class to handle fine-tuning of mT5 model for translation tasks."""
|
|
|
|
|
|
def __init__(self, config_path="config.json"):
|
|
|
"""Initialize with configuration file."""
|
|
|
with open(config_path, "r") as json_file:
|
|
|
cfg = json.load(json_file)
|
|
|
|
|
|
self.args = cfg["mt5"]["args"]
|
|
|
self.lora_config = cfg["mt5"]["lora_config"]
|
|
|
|
|
|
|
|
|
self.max_len = self.args["max_len"]
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
self.id = self.args["id"]
|
|
|
self.initial_learning_rate = self.args["initial_learning_rate"]
|
|
|
self.model_name = self.args["model_name"]
|
|
|
self.wandb_project = self.args["wandb_project"]
|
|
|
self.output_dir = self.args["output_dir"]
|
|
|
self.name = "mt5"
|
|
|
|
|
|
self.model = None
|
|
|
self.tokenizer = None
|
|
|
self.train_dataset = None
|
|
|
self.val_dataset = None
|
|
|
self.test_dataset = None
|
|
|
|
|
|
def setup_wandb(self):
|
|
|
"""Initialize Weights & Biases for experiment tracking."""
|
|
|
wandb.login(key=os.environ.get("WANDB_API"), relogin=True)
|
|
|
wandb.init(project=self.wandb_project, name="mt5-finetune-lora")
|
|
|
|
|
|
def load_model_and_tokenizer(self):
|
|
|
"""Load the mT5 model and tokenizer."""
|
|
|
self.tokenizer = MT5TokenizerFast.from_pretrained(self.model_name, legacy=False)
|
|
|
self.model = MT5ForConditionalGeneration.from_pretrained(self.model_name)
|
|
|
self.model.config.use_cache = False
|
|
|
|
|
|
def load_datasets(self):
|
|
|
"""Load training, validation, and test datasets."""
|
|
|
data_files = {
|
|
|
"train": "data/train_cleaned_dataset.csv",
|
|
|
"test": "data/test_cleaned_dataset.csv",
|
|
|
"val": "data/val_cleaned_dataset.csv",
|
|
|
}
|
|
|
|
|
|
if self.id is not None:
|
|
|
training_parts = [
|
|
|
f"[{(i * 200000) + 1 if i > 0 else ''}:{(i + 1) * 200000 if i < 10 else ''}]"
|
|
|
for i in range(11)
|
|
|
]
|
|
|
self.train_dataset = load_dataset(
|
|
|
"csv", data_files=data_files, split=f"train{training_parts[self.id]}"
|
|
|
)
|
|
|
self.test_dataset = load_dataset("csv", data_files=data_files, split="test")
|
|
|
self.val_dataset = load_dataset(
|
|
|
"csv", data_files=data_files, split="val[:20000]"
|
|
|
)
|
|
|
else:
|
|
|
self.train_dataset = load_dataset(
|
|
|
"csv", data_files=data_files, split="train[:1000000]"
|
|
|
)
|
|
|
self.test_dataset = load_dataset("csv", data_files=data_files, split="test[:100000]")
|
|
|
self.val_dataset = load_dataset("csv", data_files=data_files, split="val[:100000]")
|
|
|
|
|
|
def configure_lora(self):
|
|
|
"""Apply LoRA configuration to the model."""
|
|
|
lora_config = LoraConfig(
|
|
|
task_type=TaskType.SEQ_2_SEQ_LM,
|
|
|
r=self.lora_config["r"],
|
|
|
lora_alpha=self.lora_config["lora_alpha"],
|
|
|
target_modules=self.lora_config["target_modules"],
|
|
|
lora_dropout=self.lora_config["lora_dropout"],
|
|
|
)
|
|
|
self.model = get_peft_model(self.model, lora_config)
|
|
|
|
|
|
def finetune(self):
|
|
|
"""Orchestrate the fine-tuning process."""
|
|
|
self.setup_wandb()
|
|
|
self.load_model_and_tokenizer()
|
|
|
self.load_datasets()
|
|
|
|
|
|
preprocessor = TextPreprocessor(self.tokenizer, self.max_len, name="mt5")
|
|
|
tokenized_train_dataset = preprocessor.preprocess_dataset(self.train_dataset)
|
|
|
tokenized_eval_dataset = preprocessor.preprocess_dataset(self.val_dataset)
|
|
|
|
|
|
self.configure_lora()
|
|
|
self.model.print_trainable_parameters()
|
|
|
|
|
|
train_model(
|
|
|
model=self.model,
|
|
|
tokenizer=self.tokenizer,
|
|
|
train_dataset=tokenized_train_dataset,
|
|
|
eval_dataset=tokenized_eval_dataset,
|
|
|
output_dir=self.output_dir,
|
|
|
initial_learning_rate=self.initial_learning_rate,
|
|
|
name=self.name,
|
|
|
val_dataset=self.val_dataset,
|
|
|
)
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
finetuner = MT5Finetuner()
|
|
|
finetuner.finetune()
|
|
|
|