File size: 7,251 Bytes
ed25d6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import sys
import json
import argparse
from typing import Tuple, Union, Dict, Any
from pathlib import Path

import torch
from transformers import (
    MBart50Tokenizer,
    MBartForConditionalGeneration,
    MT5ForConditionalGeneration,
    MT5TokenizerFast,
)
from peft import PeftModel, PeftConfig

# Add parent directory to sys.path
sys.path.append(str(Path(__file__).resolve().parent.parent))
from models.rule_based_mt import TransferBasedMT
from models.statistical_mt import SMTExtended, LanguageModel

# Device configuration
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load configuration once
with open("config.json", "r") as json_file:
    CONFIG = json.load(json_file)


def parse_arguments() -> argparse.Namespace:
    """Parse command-line arguments."""
    parser = argparse.ArgumentParser(description="English-Vietnamese Machine Translation Inference")
    parser.add_argument(
        "--model_type",
        type=str,
        choices=["rbmt", "smt", "mbart50", "mt5"],
        required=True,
        help="Type of model to use for translation",
    )
    parser.add_argument("--text", type=str, required=True, help="Text to translate")
    return parser.parse_args()


class ModelLoader:
    """Handles loading of translation models."""

    @staticmethod
    def load_smt() -> None:
        """Load Statistical Machine Translation model."""
        try:
            smt = SMTExtended()
            model_dir = "checkpoints"
            if os.path.exists(model_dir) and os.path.isfile(os.path.join(model_dir, "phrase_table.pkl")):
                print("Loading existing model...")
                smt.load_model()
            else:
                print("Training new smt...")
                stats = smt.train()
                print(f"Training complete: {stats}")
            print("SMT model loaded successfully!")
            return smt
        except Exception as e:
            raise RuntimeError(f"Failed to load SMT model: {str(e)}")

    @staticmethod
    def load_mbart50() -> Tuple[MBartForConditionalGeneration, MBart50Tokenizer]:
        """Load MBart50 model and tokenizer."""
        try:
            model_config = CONFIG["mbart50"]["paths"]
            model = MBartForConditionalGeneration.from_pretrained(model_config["base_model_name"])
            model = PeftModel.from_pretrained(model, model_config["checkpoint_path"])
            tokenizer = MBart50Tokenizer.from_pretrained(model_config["checkpoint_path"])
            model.eval()
            print("MBart50 loaded successfully!")
            return model.to(DEVICE), tokenizer
        except Exception as e:
            raise RuntimeError(f"Failed to load MBart50 model: {str(e)}")

    @staticmethod
    def load_mt5() -> Tuple[MT5ForConditionalGeneration, MT5TokenizerFast]:
        """Load MT5 model and tokenizer."""
        try:
            model_config = CONFIG["mt5"]["paths"]
            model = MT5ForConditionalGeneration.from_pretrained(model_config["base_model_name"])
            model = PeftModel.from_pretrained(model, model_config["checkpoint_path"])
            tokenizer = MT5TokenizerFast.from_pretrained(model_config["checkpoint_path"])
            model.eval()
            print("MT5 loaded successfully!")
            return model.to(DEVICE), tokenizer
        except Exception as e:
            raise RuntimeError(f"Failed to load MT5 model: {str(e)}")


class Translator:
    """Handles translation using different models."""

    @staticmethod
    def translate_rbmt(text: str) -> str:
        """Translate using Rule-Based Machine Translation."""
        try:
            return TransferBasedMT().translate(text)
        except Exception as e:
            raise RuntimeError(f"RBMT translation failed: {str(e)}")

    @staticmethod
    def translate_smt(text: str, smt) -> str:
        """Translate using Statistical Machine Translation."""
        try: 
            return smt.translate_sentence(text)
            translation = smt.infer(text)
            return translation
        except Exception as e:
            raise RuntimeError(f"SMT translation failed: {str(e)}")

    @staticmethod
    def translate_mbart50(

        text: str, model: MBartForConditionalGeneration, tokenizer: MBart50Tokenizer

    ) -> str:
        """Translate using MBart50 model with batch processing."""
        try:
            model_config = CONFIG["mbart50"]["args"]
            tokenizer.src_lang = model_config["src_lang"]
            inputs = tokenizer([text], return_tensors="pt", padding=True)
            inputs = {key: value.to(DEVICE) for key, value in inputs.items()}

            with torch.no_grad():  # Disable gradient computation for inference
                translated_tokens = model.generate(
                    input_ids=inputs["input_ids"],
                    attention_mask=inputs["attention_mask"],
                    forced_bos_token_id=tokenizer.lang_code_to_id[model_config["tgt_lang"]],
                    max_length=128,
                    num_beams=5,
                )
            return tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
        except Exception as e:
            raise RuntimeError(f"MBart50 translation failed: {str(e)}")

    @staticmethod
    def translate_mt5(

        text: str, model: MT5ForConditionalGeneration, tokenizer: MT5TokenizerFast

    ) -> str:
        """Translate using MT5 model with batch processing."""
        try:
            prefix = CONFIG["mt5"]["args"]["prefix"]
            inputs = tokenizer([prefix + text], return_tensors="pt", padding=True)
            inputs = {key: value.to(DEVICE) for key, value in inputs.items()}

            with torch.no_grad():  # Disable gradient computation for inference
                translated_tokens = model.generate(
                    input_ids=inputs["input_ids"],
                    attention_mask=inputs["attention_mask"],
                    max_length=128,
                    num_beams=5,
                )
            return tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
        except Exception as e:
            raise RuntimeError(f"MT5 translation failed: {str(e)}")


def main():
    """Main function to run translation."""
    args = parse_arguments()

    try:
        if args.model_type == "rbmt":
            translation = Translator.translate_rbmt(args.text)
        elif args.model_type == "smt":
            smt = ModelLoader.load_smt()
            translation = Translator.translate_smt(args.text, smt)
        elif args.model_type == "mbart50":
            model, tokenizer = ModelLoader.load_mbart50()
            translation = Translator.translate_mbart50(args.text, model, tokenizer)
        else:  # mt5
            model, tokenizer = ModelLoader.load_mt5()
            translation = Translator.translate_mt5(args.text, model, tokenizer)
        
        print(f"Translation: {translation}")
    except Exception as e:
        print(f"Error: {str(e)}", file=sys.stderr)
        sys.exit(1)


if __name__ == "__main__":
    main()