Spaces:
Sleeping
Sleeping
File size: 7,548 Bytes
27cb60a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
"""
Phase 1E: Diagnose Low CNEC Coverage
=====================================
Investigates why only 4% CNEC coverage achieved:
1. Test bidirectional queries (reverse from/to)
2. Test historical period (more outages than future)
3. Check EIC code format differences
4. Validate CNEC list EIC codes
"""
import os
import sys
from pathlib import Path
import pandas as pd
import polars as pl
from dotenv import load_dotenv
from entsoe import EntsoePandasClient
import time
sys.path.append(str(Path(__file__).parent.parent))
load_dotenv()
API_KEY = os.getenv('ENTSOE_API_KEY')
client = EntsoePandasClient(api_key=API_KEY)
print("="*80)
print("PHASE 1E: DIAGNOSE LOW CNEC COVERAGE")
print("="*80)
print()
# ============================================================================
# Investigation 1: Test with HISTORICAL period (more outages)
# ============================================================================
print("-"*80)
print("INVESTIGATION 1: HISTORICAL vs FUTURE PERIOD")
print("-"*80)
print()
print("Hypothesis: Future period (Sept 2025) has few planned outages")
print("Testing: Historical period (Sept 2024) likely has more outage records")
print()
FBMC_ZONES = {
'FR': '10YFR-RTE------C',
'DE_LU': '10Y1001A1001A82H'
}
# Test DE_LU -> FR with historical data
print("Test: DE_LU -> FR (historical Sept 2024)")
try:
response = client._base_request(
params={
'documentType': 'A78',
'in_Domain': FBMC_ZONES['FR'],
'out_Domain': FBMC_ZONES['DE_LU']
},
start=pd.Timestamp('2024-09-01', tz='UTC'),
end=pd.Timestamp('2024-09-30', tz='UTC')
)
outages_zip = response.content
import zipfile
from io import BytesIO
with zipfile.ZipFile(BytesIO(outages_zip), 'r') as zf:
xml_count = len([f for f in zf.namelist() if f.endswith('.xml')])
print(f" [OK] Historical period: {xml_count} XML files")
except Exception as e:
print(f" [FAIL] {e}")
print()
# Compare with future period
print("Test: DE_LU -> FR (future Sept 2025)")
try:
response = client._base_request(
params={
'documentType': 'A78',
'in_Domain': FBMC_ZONES['FR'],
'out_Domain': FBMC_ZONES['DE_LU']
},
start=pd.Timestamp('2025-09-01', tz='UTC'),
end=pd.Timestamp('2025-09-30', tz='UTC')
)
outages_zip = response.content
import zipfile
from io import BytesIO
with zipfile.ZipFile(BytesIO(outages_zip), 'r') as zf:
xml_count = len([f for f in zf.namelist() if f.endswith('.xml')])
print(f" [OK] Future period: {xml_count} XML files")
except Exception as e:
print(f" [FAIL] {e}")
print()
# ============================================================================
# Investigation 2: Check EIC Code Format Differences
# ============================================================================
print("-"*80)
print("INVESTIGATION 2: EIC CODE FORMAT ANALYSIS")
print("-"*80)
print()
# Load CNEC EICs
cnec_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_all.csv'
cnec_df = pl.read_csv(cnec_file)
print("Sample CNEC EIC codes from JAO data:")
sample_cnecs = cnec_df.select(['cnec_eic', 'cnec_name']).head(10)
for row in sample_cnecs.iter_rows():
print(f" {row[0]}: {row[1]}")
print()
print("EIC codes extracted from ENTSO-E (Phase 1D):")
entso_e_eics = [
'11T0-0000-0011-L',
'10T-DE-PL-000039',
'11TD8L553------B',
'10T-BE-FR-000015',
'10T-DE-FR-00005A',
'22T-BE-IN-LI0130',
'10T-CH-DE-000034',
'10T-AT-DE-000061'
]
for eic in entso_e_eics[:10]:
in_cnec = eic in cnec_df.select('cnec_eic').to_series().to_list()
print(f" {eic}: {'MATCH' if in_cnec else 'NO MATCH'}")
print()
# ============================================================================
# Investigation 3: Bidirectional Queries
# ============================================================================
print("-"*80)
print("INVESTIGATION 3: BIDIRECTIONAL QUERIES")
print("-"*80)
print()
print("Hypothesis: Some borders need reverse direction queries")
print("Testing: DE_LU -> BE vs BE -> DE_LU")
print()
FBMC_ZONES['BE'] = '10YBE----------2'
# Forward direction
print("Forward: DE_LU -> BE")
try:
response = client._base_request(
params={
'documentType': 'A78',
'in_Domain': FBMC_ZONES['BE'],
'out_Domain': FBMC_ZONES['DE_LU']
},
start=pd.Timestamp('2024-09-01', tz='UTC'),
end=pd.Timestamp('2024-09-30', tz='UTC')
)
outages_zip = response.content
import zipfile
from io import BytesIO
with zipfile.ZipFile(BytesIO(outages_zip), 'r') as zf:
xml_count = len([f for f in zf.namelist() if f.endswith('.xml')])
print(f" [OK] {xml_count} XML files")
except Exception as e:
print(f" [FAIL] {e}")
time.sleep(2.2)
# Reverse direction
print("Reverse: BE -> DE_LU")
try:
response = client._base_request(
params={
'documentType': 'A78',
'in_Domain': FBMC_ZONES['DE_LU'],
'out_Domain': FBMC_ZONES['BE']
},
start=pd.Timestamp('2024-09-01', tz='UTC'),
end=pd.Timestamp('2024-09-30', tz='UTC')
)
outages_zip = response.content
import zipfile
from io import BytesIO
with zipfile.ZipFile(BytesIO(outages_zip), 'r') as zf:
xml_count = len([f for f in zf.namelist() if f.endswith('.xml')])
print(f" [OK] {xml_count} XML files")
except Exception as e:
print(f" [FAIL] {e}")
print()
# ============================================================================
# Investigation 4: CNEC Tier Distribution
# ============================================================================
print("-"*80)
print("INVESTIGATION 4: CNEC TIER DISTRIBUTION")
print("-"*80)
print()
tier_dist = cnec_df.group_by('tier').agg(pl.count()).sort('tier')
print("CNEC distribution by tier:")
print(tier_dist)
print()
# Check if matched CNECs are from specific tier
matched_eics = [
'11T0-0000-0011-L',
'10T-DE-PL-000039',
'11TD8L553------B',
'10T-BE-FR-000015',
'10T-DE-FR-00005A',
'22T-BE-IN-LI0130',
'10T-CH-DE-000034',
'10T-AT-DE-000061'
]
print("Matched CNECs by tier:")
for eic in matched_eics:
matched = cnec_df.filter(pl.col('cnec_eic') == eic)
if len(matched) > 0:
tier = matched.select('tier').item(0, 0)
name = matched.select('cnec_name').item(0, 0)
print(f" Tier-{tier}: {eic} ({name})")
print()
# ============================================================================
# SUMMARY
# ============================================================================
print("="*80)
print("DIAGNOSTIC SUMMARY")
print("="*80)
print()
print("Possible reasons for low coverage:")
print(" 1. Future period (Sept 2025) has fewer outages than historical")
print(" 2. EIC code format differences between JAO and ENTSO-E")
print(" 3. Bidirectional queries needed for some borders")
print(" 4. CNEC list includes internal lines not in transmission outages")
print(" 5. 200 CNECs may be aggregated identifiers, not individual assets")
print()
print("Recommendations:")
print(" 1. Use historical period (last 24 months) for better coverage")
print(" 2. Query both directions for each border")
print(" 3. Investigate EIC mapping between JAO and ENTSO-E")
print(" 4. Consider using ALL extracted EICs as features (63 total)")
print(" 5. Alternative: Use border-level outages (20 features)")
print()
|