File size: 12,272 Bytes
27cb60a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
"""
Phase 1 ENTSO-E API Testing Script
===================================

Tests critical implementation details:
1. Pumped storage query method (Scenario A/B/C)
2. Transmission outages (planned A53 vs unplanned A54)
3. Forward-looking outage queries (TODAY -> +14 days)
4. CNEC EIC filtering match rate

Run this before implementing full collection script.
"""

import os
import sys
from pathlib import Path
from datetime import datetime, timedelta
import pandas as pd
import polars as pl
from dotenv import load_dotenv
from entsoe import EntsoePandasClient

# Add src to path for imports
sys.path.append(str(Path(__file__).parent.parent))

# Load environment variables
load_dotenv()
API_KEY = os.getenv('ENTSOE_API_KEY')

if not API_KEY:
    raise ValueError("ENTSOE_API_KEY not found in .env file")

# Initialize client
client = EntsoePandasClient(api_key=API_KEY)

print("="*80)
print("PHASE 1 ENTSO-E API TESTING")
print("="*80)
print()

# ============================================================================
# TEST 1: Pumped Storage Query Method
# ============================================================================

print("-"*80)
print("TEST 1: PUMPED STORAGE QUERY METHOD")
print("-"*80)
print()

print("Testing query_generation() with PSR type B10 (Hydro Pumped Storage)")
print("Zone: Switzerland (CH) - largest pumped storage in Europe")
print("Period: 2025-09-23 to 2025-09-30 (1 week)")
print()

try:
    test_pumped = client.query_generation(
        country_code='CH',
        start=pd.Timestamp('2025-09-23', tz='UTC'),
        end=pd.Timestamp('2025-09-30', tz='UTC'),
        psr_type='B10'  # Hydro Pumped Storage
    )

    print(f"[OK] Query successful!")
    print(f"  Data type: {type(test_pumped)}")
    print(f"  Shape: {test_pumped.shape}")
    print(f"  Columns: {test_pumped.columns.tolist() if hasattr(test_pumped, 'columns') else 'N/A (Series)'}")
    print()

    # Analyze values
    if isinstance(test_pumped, pd.Series):
        print("  Data is a Series (single column)")
        print(f"  Min value: {test_pumped.min():.2f} MW")
        print(f"  Max value: {test_pumped.max():.2f} MW")
        print(f"  Mean value: {test_pumped.mean():.2f} MW")
        print()

        # Check for negative values (would indicate net balance)
        negative_count = (test_pumped < 0).sum()
        print(f"  Negative values: {negative_count} / {len(test_pumped)} ({negative_count/len(test_pumped)*100:.1f}%)")

        if negative_count > 0:
            print("\n  >> SCENARIO A: Returns NET BALANCE (generation - pumping)")
            print("  >> Need to derive gross generation and consumption separately")
            print("  >> OR query twice with different parameters")
        else:
            print("\n  >> SCENARIO B: Returns GENERATION ONLY (always positive)")
            print("  >> Need to find separate method for pumping consumption")

    elif isinstance(test_pumped, pd.DataFrame):
        print("  Data is a DataFrame (multiple columns)")
        print(f"  Columns: {test_pumped.columns.tolist()}")
        print()

        for col in test_pumped.columns:
            print(f"  Column '{col}':")
            print(f"    Min: {test_pumped[col].min():.2f} MW")
            print(f"    Max: {test_pumped[col].max():.2f} MW")
            print(f"    Negative values: {(test_pumped[col] < 0).sum()}")

        print("\n  >> SCENARIO C: Returns MULTIPLE COLUMNS")
        print("  >> Check if separate generation/consumption/net columns exist")

    # Show sample values (48 hours = 2 days)
    print("\n  Sample values (first 48 hours):")
    print(test_pumped.head(48))

except Exception as e:
    print(f"[FAIL] Query failed: {e}")
    print("  >> Cannot determine pumped storage query method")

print()

# ============================================================================
# TEST 2: Transmission Outages - Planned vs Unplanned
# ============================================================================

print("-"*80)
print("TEST 2: TRANSMISSION OUTAGES - PLANNED (A53) vs UNPLANNED (A54)")
print("-"*80)
print()

print("Testing query_unavailability_transmission()")
print("Border: Germany/Luxembourg (DE_LU) -> France (FR)")
print("Period: 2025-09-23 to 2025-09-30 (1 week)")
print()

try:
    test_outages = client.query_unavailability_transmission(
        country_code_from='10Y1001A1001A82H',  # DE_LU
        country_code_to='10YFR-RTE------C',     # FR
        start=pd.Timestamp('2025-09-23', tz='UTC'),
        end=pd.Timestamp('2025-09-30', tz='UTC')
    )

    print(f"[OK] Query successful!")
    print(f"  Records returned: {len(test_outages)}")
    print(f"  Columns: {test_outages.columns.tolist()}")
    print()

    # Check for businessType column
    if 'businessType' in test_outages.columns:
        print("  [OK] businessType column found!")
        print("\n  Business types distribution:")
        business_counts = test_outages['businessType'].value_counts()
        print(business_counts)
        print()

        # Check for A53 (Planned) and A54 (Unplanned)
        has_a53 = 'A53' in business_counts.index
        has_a54 = 'A54' in business_counts.index

        if has_a53 and has_a54:
            print("  [OK] BOTH A53 (Planned) and A54 (Unplanned) present!")
            print("  >> Can use standard client for all outages")
        elif has_a53:
            print("  [OK] A53 (Planned) found, but no A54 (Unplanned)")
            print("  >> Standard client returns only planned outages")
        elif has_a54:
            print("  [FAIL] Only A54 (Unplanned) found - NO PLANNED OUTAGES (A53)")
            print("  >> CRITICAL: Need EntsoeRawClient workaround for planned outages!")
        else:
            print("  [WARN] Unknown business types")
            print("  >> Manual investigation required")
    else:
        print("  [FAIL] businessType column NOT found!")
        print("  >> Cannot determine if planned outages are included")
        print("  >> May need EntsoeRawClient to access businessType parameter")

    # Show sample outages
    print("\n  Sample outage records:")
    display_cols = ['start', 'end', 'unavailability_reason'] if 'unavailability_reason' in test_outages.columns else ['start', 'end']
    if 'businessType' in test_outages.columns:
        display_cols.append('businessType')
    print(test_outages[display_cols].head(10))

except Exception as e:
    print(f"[FAIL] Query failed: {e}")
    print("  >> Cannot test transmission outages")

print()

# ============================================================================
# TEST 3: Forward-Looking Outage Queries
# ============================================================================

print("-"*80)
print("TEST 3: FORWARD-LOOKING OUTAGE QUERIES (TODAY -> +14 DAYS)")
print("-"*80)
print()

today = datetime.now()
future_end = today + timedelta(days=14)

print(f"Testing forward-looking transmission outages")
print(f"Border: Germany/Luxembourg (DE_LU) -> France (FR)")
print(f"Period: {today.strftime('%Y-%m-%d')} to {future_end.strftime('%Y-%m-%d')}")
print()

try:
    future_outages = client.query_unavailability_transmission(
        country_code_from='10Y1001A1001A82H',  # DE_LU
        country_code_to='10YFR-RTE------C',     # FR
        start=pd.Timestamp(today, tz='UTC'),
        end=pd.Timestamp(future_end, tz='UTC')
    )

    print(f"[OK] Forward-looking query successful!")
    print(f"  Future outages found: {len(future_outages)}")

    if len(future_outages) > 0:
        print(f"  Date range: {future_outages['start'].min()} to {future_outages['end'].max()}")
        print("\n  Sample future outages:")
        display_cols = ['start', 'end']
        if 'businessType' in future_outages.columns:
            display_cols.append('businessType')
        if 'unavailability_reason' in future_outages.columns:
            display_cols.append('unavailability_reason')
        print(future_outages[display_cols].head())
    else:
        print("  >> No future outages found (may be normal if no planned maintenance)")

except Exception as e:
    print(f"[FAIL] Forward-looking query failed: {e}")
    print("  >> Cannot query future outages")

print()

# ============================================================================
# TEST 4: CNEC EIC Filtering
# ============================================================================

print("-"*80)
print("TEST 4: CNEC EIC FILTERING MATCH RATE")
print("-"*80)
print()

print("Loading 208 critical CNEC EIC codes...")

try:
    # Load CNEC EIC codes
    cnec_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_all.csv'

    if not cnec_file.exists():
        print(f"  [WARN] File not found: {cnec_file}")
        print("  >> Trying separate tier files...")

        tier1_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_tier1.csv'
        tier2_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_tier2.csv'

        if tier1_file.exists() and tier2_file.exists():
            tier1 = pl.read_csv(tier1_file)
            tier2 = pl.read_csv(tier2_file)
            cnec_df = pl.concat([tier1, tier2])
            print(f"  [OK] Loaded from separate tier files")
        else:
            raise FileNotFoundError("CNEC files not found")
    else:
        cnec_df = pl.read_csv(cnec_file)
        print(f"  [OK] Loaded from combined file")

    cnec_eics = cnec_df.select('cnec_eic').to_series().to_list()
    print(f"  CNEC EICs loaded: {len(cnec_eics)}")
    print()

    # Filter test outages from Test 2
    if 'test_outages' in locals() and len(test_outages) > 0:
        print(f"  Filtering {len(test_outages)} outages to CNEC EICs...")

        # Check which column contains EIC codes
        eic_column = None
        for col in test_outages.columns:
            if 'eic' in col.lower() or 'mrid' in col.lower():
                eic_column = col
                break

        if eic_column:
            print(f"  Using column: {eic_column}")
            filtered = test_outages[test_outages[eic_column].isin(cnec_eics)]
            match_rate = len(filtered) / len(test_outages) * 100 if len(test_outages) > 0 else 0

            print(f"\n  Results:")
            print(f"    Total outages: {len(test_outages)}")
            print(f"    Matching CNECs: {len(filtered)}")
            print(f"    Match rate: {match_rate:.1f}%")

            if match_rate > 0:
                print(f"\n  [OK] CNEC filtering works!")
                print(f"  >> Expected match rate: 5-15% (most outages are non-critical lines)")
            else:
                print(f"\n  [FAIL] No matches found")
                print(f"  >> May need to verify CNEC EIC codes or outage data structure")
        else:
            print("  [FAIL] Could not identify EIC column in outage data")
            print(f"  >> Available columns: {test_outages.columns.tolist()}")
    else:
        print("  >> No outage data from Test 2 to filter")
        print("  >> Run Test 2 successfully first")

except Exception as e:
    print(f"[FAIL] CNEC filtering test failed: {e}")

print()

# ============================================================================
# SUMMARY & RECOMMENDATIONS
# ============================================================================

print("="*80)
print("PHASE 1 TESTING SUMMARY")
print("="*80)
print()

print("Review the test results above to determine:")
print()
print("1. PUMPED STORAGE:")
print("   - Scenario A: Implement separate gross generation/consumption extraction")
print("   - Scenario B: Find alternative method for pumping consumption")
print("   - Scenario C: Extract all columns directly")
print()
print("2. TRANSMISSION OUTAGES:")
print("   - If A53 present: Use standard client [OK]")
print("   - If only A54: Implement EntsoeRawClient for planned outages [FAIL]")
print()
print("3. FORWARD-LOOKING:")
print("   - If successful: Can query future outages [OK]")
print("   - If failed: Need alternative approach [FAIL]")
print()
print("4. CNEC FILTERING:")
print("   - If match rate 5-15%: Expected behavior [OK]")
print("   - If 0%: Verify CNEC EIC codes or data structure [FAIL]")
print()
print("="*80)
print("Next: Implement collection script based on test results")
print("="*80)