Spaces:
Sleeping
Sleeping
File size: 12,272 Bytes
27cb60a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
"""
Phase 1 ENTSO-E API Testing Script
===================================
Tests critical implementation details:
1. Pumped storage query method (Scenario A/B/C)
2. Transmission outages (planned A53 vs unplanned A54)
3. Forward-looking outage queries (TODAY -> +14 days)
4. CNEC EIC filtering match rate
Run this before implementing full collection script.
"""
import os
import sys
from pathlib import Path
from datetime import datetime, timedelta
import pandas as pd
import polars as pl
from dotenv import load_dotenv
from entsoe import EntsoePandasClient
# Add src to path for imports
sys.path.append(str(Path(__file__).parent.parent))
# Load environment variables
load_dotenv()
API_KEY = os.getenv('ENTSOE_API_KEY')
if not API_KEY:
raise ValueError("ENTSOE_API_KEY not found in .env file")
# Initialize client
client = EntsoePandasClient(api_key=API_KEY)
print("="*80)
print("PHASE 1 ENTSO-E API TESTING")
print("="*80)
print()
# ============================================================================
# TEST 1: Pumped Storage Query Method
# ============================================================================
print("-"*80)
print("TEST 1: PUMPED STORAGE QUERY METHOD")
print("-"*80)
print()
print("Testing query_generation() with PSR type B10 (Hydro Pumped Storage)")
print("Zone: Switzerland (CH) - largest pumped storage in Europe")
print("Period: 2025-09-23 to 2025-09-30 (1 week)")
print()
try:
test_pumped = client.query_generation(
country_code='CH',
start=pd.Timestamp('2025-09-23', tz='UTC'),
end=pd.Timestamp('2025-09-30', tz='UTC'),
psr_type='B10' # Hydro Pumped Storage
)
print(f"[OK] Query successful!")
print(f" Data type: {type(test_pumped)}")
print(f" Shape: {test_pumped.shape}")
print(f" Columns: {test_pumped.columns.tolist() if hasattr(test_pumped, 'columns') else 'N/A (Series)'}")
print()
# Analyze values
if isinstance(test_pumped, pd.Series):
print(" Data is a Series (single column)")
print(f" Min value: {test_pumped.min():.2f} MW")
print(f" Max value: {test_pumped.max():.2f} MW")
print(f" Mean value: {test_pumped.mean():.2f} MW")
print()
# Check for negative values (would indicate net balance)
negative_count = (test_pumped < 0).sum()
print(f" Negative values: {negative_count} / {len(test_pumped)} ({negative_count/len(test_pumped)*100:.1f}%)")
if negative_count > 0:
print("\n >> SCENARIO A: Returns NET BALANCE (generation - pumping)")
print(" >> Need to derive gross generation and consumption separately")
print(" >> OR query twice with different parameters")
else:
print("\n >> SCENARIO B: Returns GENERATION ONLY (always positive)")
print(" >> Need to find separate method for pumping consumption")
elif isinstance(test_pumped, pd.DataFrame):
print(" Data is a DataFrame (multiple columns)")
print(f" Columns: {test_pumped.columns.tolist()}")
print()
for col in test_pumped.columns:
print(f" Column '{col}':")
print(f" Min: {test_pumped[col].min():.2f} MW")
print(f" Max: {test_pumped[col].max():.2f} MW")
print(f" Negative values: {(test_pumped[col] < 0).sum()}")
print("\n >> SCENARIO C: Returns MULTIPLE COLUMNS")
print(" >> Check if separate generation/consumption/net columns exist")
# Show sample values (48 hours = 2 days)
print("\n Sample values (first 48 hours):")
print(test_pumped.head(48))
except Exception as e:
print(f"[FAIL] Query failed: {e}")
print(" >> Cannot determine pumped storage query method")
print()
# ============================================================================
# TEST 2: Transmission Outages - Planned vs Unplanned
# ============================================================================
print("-"*80)
print("TEST 2: TRANSMISSION OUTAGES - PLANNED (A53) vs UNPLANNED (A54)")
print("-"*80)
print()
print("Testing query_unavailability_transmission()")
print("Border: Germany/Luxembourg (DE_LU) -> France (FR)")
print("Period: 2025-09-23 to 2025-09-30 (1 week)")
print()
try:
test_outages = client.query_unavailability_transmission(
country_code_from='10Y1001A1001A82H', # DE_LU
country_code_to='10YFR-RTE------C', # FR
start=pd.Timestamp('2025-09-23', tz='UTC'),
end=pd.Timestamp('2025-09-30', tz='UTC')
)
print(f"[OK] Query successful!")
print(f" Records returned: {len(test_outages)}")
print(f" Columns: {test_outages.columns.tolist()}")
print()
# Check for businessType column
if 'businessType' in test_outages.columns:
print(" [OK] businessType column found!")
print("\n Business types distribution:")
business_counts = test_outages['businessType'].value_counts()
print(business_counts)
print()
# Check for A53 (Planned) and A54 (Unplanned)
has_a53 = 'A53' in business_counts.index
has_a54 = 'A54' in business_counts.index
if has_a53 and has_a54:
print(" [OK] BOTH A53 (Planned) and A54 (Unplanned) present!")
print(" >> Can use standard client for all outages")
elif has_a53:
print(" [OK] A53 (Planned) found, but no A54 (Unplanned)")
print(" >> Standard client returns only planned outages")
elif has_a54:
print(" [FAIL] Only A54 (Unplanned) found - NO PLANNED OUTAGES (A53)")
print(" >> CRITICAL: Need EntsoeRawClient workaround for planned outages!")
else:
print(" [WARN] Unknown business types")
print(" >> Manual investigation required")
else:
print(" [FAIL] businessType column NOT found!")
print(" >> Cannot determine if planned outages are included")
print(" >> May need EntsoeRawClient to access businessType parameter")
# Show sample outages
print("\n Sample outage records:")
display_cols = ['start', 'end', 'unavailability_reason'] if 'unavailability_reason' in test_outages.columns else ['start', 'end']
if 'businessType' in test_outages.columns:
display_cols.append('businessType')
print(test_outages[display_cols].head(10))
except Exception as e:
print(f"[FAIL] Query failed: {e}")
print(" >> Cannot test transmission outages")
print()
# ============================================================================
# TEST 3: Forward-Looking Outage Queries
# ============================================================================
print("-"*80)
print("TEST 3: FORWARD-LOOKING OUTAGE QUERIES (TODAY -> +14 DAYS)")
print("-"*80)
print()
today = datetime.now()
future_end = today + timedelta(days=14)
print(f"Testing forward-looking transmission outages")
print(f"Border: Germany/Luxembourg (DE_LU) -> France (FR)")
print(f"Period: {today.strftime('%Y-%m-%d')} to {future_end.strftime('%Y-%m-%d')}")
print()
try:
future_outages = client.query_unavailability_transmission(
country_code_from='10Y1001A1001A82H', # DE_LU
country_code_to='10YFR-RTE------C', # FR
start=pd.Timestamp(today, tz='UTC'),
end=pd.Timestamp(future_end, tz='UTC')
)
print(f"[OK] Forward-looking query successful!")
print(f" Future outages found: {len(future_outages)}")
if len(future_outages) > 0:
print(f" Date range: {future_outages['start'].min()} to {future_outages['end'].max()}")
print("\n Sample future outages:")
display_cols = ['start', 'end']
if 'businessType' in future_outages.columns:
display_cols.append('businessType')
if 'unavailability_reason' in future_outages.columns:
display_cols.append('unavailability_reason')
print(future_outages[display_cols].head())
else:
print(" >> No future outages found (may be normal if no planned maintenance)")
except Exception as e:
print(f"[FAIL] Forward-looking query failed: {e}")
print(" >> Cannot query future outages")
print()
# ============================================================================
# TEST 4: CNEC EIC Filtering
# ============================================================================
print("-"*80)
print("TEST 4: CNEC EIC FILTERING MATCH RATE")
print("-"*80)
print()
print("Loading 208 critical CNEC EIC codes...")
try:
# Load CNEC EIC codes
cnec_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_all.csv'
if not cnec_file.exists():
print(f" [WARN] File not found: {cnec_file}")
print(" >> Trying separate tier files...")
tier1_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_tier1.csv'
tier2_file = Path(__file__).parent.parent / 'data' / 'processed' / 'critical_cnecs_tier2.csv'
if tier1_file.exists() and tier2_file.exists():
tier1 = pl.read_csv(tier1_file)
tier2 = pl.read_csv(tier2_file)
cnec_df = pl.concat([tier1, tier2])
print(f" [OK] Loaded from separate tier files")
else:
raise FileNotFoundError("CNEC files not found")
else:
cnec_df = pl.read_csv(cnec_file)
print(f" [OK] Loaded from combined file")
cnec_eics = cnec_df.select('cnec_eic').to_series().to_list()
print(f" CNEC EICs loaded: {len(cnec_eics)}")
print()
# Filter test outages from Test 2
if 'test_outages' in locals() and len(test_outages) > 0:
print(f" Filtering {len(test_outages)} outages to CNEC EICs...")
# Check which column contains EIC codes
eic_column = None
for col in test_outages.columns:
if 'eic' in col.lower() or 'mrid' in col.lower():
eic_column = col
break
if eic_column:
print(f" Using column: {eic_column}")
filtered = test_outages[test_outages[eic_column].isin(cnec_eics)]
match_rate = len(filtered) / len(test_outages) * 100 if len(test_outages) > 0 else 0
print(f"\n Results:")
print(f" Total outages: {len(test_outages)}")
print(f" Matching CNECs: {len(filtered)}")
print(f" Match rate: {match_rate:.1f}%")
if match_rate > 0:
print(f"\n [OK] CNEC filtering works!")
print(f" >> Expected match rate: 5-15% (most outages are non-critical lines)")
else:
print(f"\n [FAIL] No matches found")
print(f" >> May need to verify CNEC EIC codes or outage data structure")
else:
print(" [FAIL] Could not identify EIC column in outage data")
print(f" >> Available columns: {test_outages.columns.tolist()}")
else:
print(" >> No outage data from Test 2 to filter")
print(" >> Run Test 2 successfully first")
except Exception as e:
print(f"[FAIL] CNEC filtering test failed: {e}")
print()
# ============================================================================
# SUMMARY & RECOMMENDATIONS
# ============================================================================
print("="*80)
print("PHASE 1 TESTING SUMMARY")
print("="*80)
print()
print("Review the test results above to determine:")
print()
print("1. PUMPED STORAGE:")
print(" - Scenario A: Implement separate gross generation/consumption extraction")
print(" - Scenario B: Find alternative method for pumping consumption")
print(" - Scenario C: Extract all columns directly")
print()
print("2. TRANSMISSION OUTAGES:")
print(" - If A53 present: Use standard client [OK]")
print(" - If only A54: Implement EntsoeRawClient for planned outages [FAIL]")
print()
print("3. FORWARD-LOOKING:")
print(" - If successful: Can query future outages [OK]")
print(" - If failed: Need alternative approach [FAIL]")
print()
print("4. CNEC FILTERING:")
print(" - If match rate 5-15%: Expected behavior [OK]")
print(" - If 0%: Verify CNEC EIC codes or data structure [FAIL]")
print()
print("="*80)
print("Next: Implement collection script based on test results")
print("="*80)
|