File size: 9,547 Bytes
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
f4be780
 
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f4fec
 
 
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4be780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74bde7a
 
 
 
 
 
 
 
 
dfe40ac
 
 
 
74bde7a
f4be780
dfe40ac
 
74bde7a
f4be780
74bde7a
f4be780
dfe40ac
f4be780
 
 
 
 
 
 
 
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4be780
 
 
 
 
 
 
 
 
 
 
c685a02
74bde7a
c685a02
 
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
"""
Full Inference Run for Chronos 2 Zero-Shot Forecasting
Generates 14-day forecasts for all 38 FBMC borders
"""

import time
import pandas as pd
import numpy as np
import polars as pl
from datetime import datetime, timedelta
from chronos import Chronos2Pipeline
import torch
from src.forecasting.feature_availability import FeatureAvailability
from src.forecasting.dynamic_forecast import DynamicForecast

print("="*60)
print("CHRONOS 2 FULL INFERENCE - ALL BORDERS")
print("="*60)

total_start = time.time()

# Step 1: Load dataset
print("\n[1/7] Loading dataset from HuggingFace...")
start_time = time.time()

from datasets import load_dataset
import os

# Use HF token for private dataset access
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
    raise ValueError("HF_TOKEN not found in environment. Please set HF_TOKEN.")

dataset = load_dataset(
    "evgueni-p/fbmc-features-24month",
    split="train",
    token=hf_token
)
df = pl.from_pandas(dataset.to_pandas())

# Ensure timestamp is datetime (check if conversion needed)
if df['timestamp'].dtype == pl.String:
    df = df.with_columns(pl.col('timestamp').str.to_datetime())
elif df['timestamp'].dtype != pl.Datetime:
    df = df.with_columns(pl.col('timestamp').cast(pl.Datetime))

print(f"[OK] Loaded {len(df)} rows, {len(df.columns)} columns")
print(f"     Date range: {df['timestamp'].min()} to {df['timestamp'].max()}")
print(f"     Load time: {time.time() - start_time:.1f}s")

# Feature categorization using FeatureAvailability module
print("\n[Feature Categorization]")
categories = FeatureAvailability.categorize_features(df.columns)

# Validate categorization
is_valid, warnings = FeatureAvailability.validate_categorization(categories, verbose=False)

# Report categories
print(f"  Full-horizon D+14:  {len(categories['full_horizon_d14'])} (temporal + weather + outages + LTA)")
print(f"  Partial D+1:        {len(categories['partial_d1'])} (load forecasts)")
print(f"  Historical only:    {len(categories['historical'])} (prices, generation, demand, lags, etc.)")
print(f"  Total features:     {sum(len(v) for v in categories.values())}")

if not is_valid:
    print("\n[!] WARNING: Feature categorization issues:")
    for w in warnings:
        print(f"    - {w}")

# For Chronos-2: combine full+partial for future covariates
# (Chronos-2 supports partial availability via masking)
known_future_cols = categories['full_horizon_d14'] + categories['partial_d1']
past_only_cols = categories['historical']

# Step 2: Identify all target borders
print("\n[2/7] Identifying target borders...")
target_cols = [col for col in df.columns if col.startswith('target_border_')]
borders = [col.replace('target_border_', '') for col in target_cols]
print(f"[OK] Found {len(borders)} borders")
print(f"     Borders: {', '.join(borders[:5])}... (showing first 5)")

# Step 3: Prepare forecast parameters
print("\n[3/7] Setting up forecast parameters...")
# Use a date that has 14 days of future data available
# Dataset ends at 2025-09-30 23:00, so we need run_date such that
# forecast ends at most at 2025-09-30 23:00
# For 336 hours (14 days), run_date should be at most 2025-09-16 23:00
context_hours = 512
prediction_hours = 336  # 14 days (fixed)
max_date = df['timestamp'].max()
run_date = max_date - timedelta(hours=prediction_hours)

print(f"     Run date: {run_date}")
print(f"     Context window: {context_hours} hours")
print(f"     Prediction horizon: {prediction_hours} hours (14 days, D+1 to D+14)")
print(f"     Forecast range: {run_date + timedelta(hours=1)} to {run_date + timedelta(hours=prediction_hours)}")

# Initialize DynamicForecast once for all borders
forecaster = DynamicForecast(
    dataset=df,
    context_hours=context_hours,
    forecast_hours=prediction_hours
)
print(f"[OK] DynamicForecast initialized with time-aware data extraction")

# Step 4: Load model
print("\n[4/7] Loading Chronos 2 model on GPU...")
model_start = time.time()

pipeline = Chronos2Pipeline.from_pretrained(
    'amazon/chronos-2',
    device_map='cuda',
    dtype=torch.float32
)

model_time = time.time() - model_start
print(f"[OK] Model loaded in {model_time:.1f}s")
print(f"     Device: {next(pipeline.model.parameters()).device}")

# Step 5: Run inference for all borders
print(f"\n[5/7] Running zero-shot inference for {len(borders)} borders...")
print(f"      Prediction: {prediction_hours} hours (14 days) per border")
print(f"      Progress:")

all_forecasts = []
inference_times = []

for i, border in enumerate(borders, 1):
    border_start = time.time()

    try:
        # Prepare data with time-aware extraction
        context_data, future_data = forecaster.prepare_forecast_data(run_date, border)

        # Validate no data leakage (on first border only, for performance)
        if i == 1:
            is_valid, errors = forecaster.validate_no_leakage(context_data, future_data, run_date)
            if not is_valid:
                print(f"\n[ERROR] Data leakage detected on first border ({border}):")
                for err in errors:
                    print(f"    - {err}")
                exit(1)
        # Call API with separate context and future dataframes
        forecasts = pipeline.predict_df(
            context_data,  # Historical data (positional parameter)
            future_df=future_data,  # Future covariates (named parameter)
            prediction_length=prediction_hours,
            id_column='border',
            timestamp_column='timestamp',
            target='target'
        )

        # Add border identifier
        forecasts['border'] = border
        all_forecasts.append(forecasts)

        border_time = time.time() - border_start
        inference_times.append(border_time)

        print(f"      [{i:2d}/{len(borders)}] {border:15s} - {border_time:.2f}s")

    except Exception as e:
        print(f"      [{i:2d}/{len(borders)}] {border:15s} - FAILED: {e}")

inference_time = time.time() - model_start - model_time

print(f"\n[OK] Inference complete!")
print(f"     Total inference time: {inference_time:.1f}s")
print(f"     Average per border: {np.mean(inference_times):.2f}s")
print(f"     Successful forecasts: {len(all_forecasts)}/{len(borders)}")

# Step 6: Combine and save results
print("\n[6/7] Saving forecast results...")

if all_forecasts:
    # Combine all forecasts
    combined_forecasts = pd.concat(all_forecasts, ignore_index=True)

    # Save as parquet (efficient, compressed)
    output_file = '/tmp/chronos2_forecasts_14day.parquet'
    combined_forecasts.to_parquet(output_file)

    print(f"[OK] Forecasts saved to: {output_file}")
    print(f"     Shape: {combined_forecasts.shape}")
    print(f"     Columns: {list(combined_forecasts.columns)}")
    print(f"     File size: {os.path.getsize(output_file) / 1024 / 1024:.2f} MB")

    # Save summary statistics
    summary_file = '/tmp/chronos2_forecast_summary.csv'
    summary_data = []
    for border in borders:
        border_forecasts = combined_forecasts[combined_forecasts['border'] == border]
        if len(border_forecasts) > 0 and 'mean' in border_forecasts.columns:
            summary_data.append({
                'border': border,
                'forecast_points': len(border_forecasts),
                'mean_forecast': border_forecasts['mean'].mean(),
                'min_forecast': border_forecasts['mean'].min(),
                'max_forecast': border_forecasts['mean'].max(),
                'std_forecast': border_forecasts['mean'].std()
            })

    summary_df = pd.DataFrame(summary_data)
    summary_df.to_csv(summary_file, index=False)
    print(f"[OK] Summary saved to: {summary_file}")
else:
    print("[!] No successful forecasts to save")

# Step 7: Validation
print("\n[7/7] Validating results...")

if all_forecasts:
    # Check for NaN values
    nan_count = combined_forecasts.isna().sum().sum()
    print(f"     NaN values: {nan_count}")

    # Sanity checks on mean forecast
    if 'mean' in combined_forecasts.columns:
        mean_forecast = combined_forecasts['mean']
        print(f"     Overall statistics:")
        print(f"       Mean: {mean_forecast.mean():.2f} MW")
        print(f"       Min: {mean_forecast.min():.2f} MW")
        print(f"       Max: {mean_forecast.max():.2f} MW")
        print(f"       Std: {mean_forecast.std():.2f} MW")

        # Warnings
        if mean_forecast.min() < 0:
            print("     [!] WARNING: Negative forecasts detected")
        if mean_forecast.max() > 20000:
            print("     [!] WARNING: Unreasonably high forecasts")
        if nan_count == 0 and mean_forecast.min() >= 0 and mean_forecast.max() < 20000:
            print("     [OK] Validation passed!")

# Performance summary
print("\n" + "="*60)
print("FULL INFERENCE SUMMARY")
print("="*60)
print(f"Borders forecasted: {len(all_forecasts)}/{len(borders)}")
print(f"Forecast horizon: {prediction_hours} hours (14 days)")
print(f"Total inference time: {inference_time:.1f}s ({inference_time / 60:.2f} min)")
print(f"Average per border: {np.mean(inference_times):.2f}s")
print(f"Speed: {prediction_hours * len(all_forecasts) / inference_time:.1f} hours/second")

# Target check
if inference_time < 300:  # 5 minutes
    print(f"\n[OK] Performance target met! (<5 min for full run)")
else:
    print(f"\n[!] Performance slower than target (expected <5 min)")

print("="*60)
print("[OK] FULL INFERENCE COMPLETE!")
print("="*60)

# Total time
total_time = time.time() - total_start
print(f"\nTotal execution time: {total_time:.1f}s ({total_time / 60:.1f} min)")