Spaces:
Sleeping
Sleeping
File size: 10,759 Bytes
74bde7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# HuggingFace Space Setup Guide - FBMC Chronos 2
**IMPORTANT**: This is Day 3, Hour 1-4 of the implementation plan. Complete all steps before proceeding to inference pipeline development.
---
## Prerequisites
- HuggingFace account: https://huggingface.co/join
- HuggingFace write token: https://huggingface.co/settings/tokens
- Git installed locally
- Project files ready at: `C:\Users\evgue\projects\fbmc_chronos2`
---
## STEP 1: Create HuggingFace Dataset Repository (10 min)
### 1.1 Create Dataset on HuggingFace Web UI
1. Go to: https://huggingface.co/new-dataset
2. Fill in:
- **Owner**: YOUR_USERNAME
- **Dataset name**: `fbmc-features-24month`
- **License**: MIT
- **Visibility**: **Private** (contains project data)
3. Click "Create dataset"
### 1.2 Upload Data to Dataset
#### Option A: Using the upload script (Recommended)
```bash
# 1. Add your HF token to .env file
echo "HF_TOKEN=hf_..." >> .env
# 2. Edit the script to replace YOUR_USERNAME with your actual HF username
# Edit: scripts/upload_to_hf_datasets.py
# Replace all instances of "YOUR_USERNAME" with your HuggingFace username
# 3. Install required packages
.venv\Scripts\uv.exe pip install datasets huggingface-hub
# 4. Run the upload script
.venv\Scripts\python.exe scripts\upload_to_hf_datasets.py
```
The script will upload:
- `features_unified_24month.parquet` (~25 MB)
- `metadata.csv` (2,553 features)
- `target_borders.txt` (38 target borders)
#### Option B: Manual upload via web UI
1. Go to: https://huggingface.co/datasets/YOUR_USERNAME/fbmc-features-24month
2. Click "Files" tab → "Add file" → "Upload files"
3. Upload:
- `data/processed/features_unified_24month.parquet`
- `data/processed/features_unified_metadata.csv` (rename to `metadata.csv`)
- `data/processed/target_borders_list.txt` (rename to `target_borders.txt`)
### 1.3 Verify Dataset Uploaded
Visit: `https://huggingface.co/datasets/YOUR_USERNAME/fbmc-features-24month`
You should see:
- `features_unified_24month.parquet` (~25 MB)
- `metadata.csv` (~200 KB)
- `target_borders.txt` (~1 KB)
---
## STEP 2: Create HuggingFace Space (15 min)
### 2.1 Create Space on HuggingFace Web UI
1. Go to: https://huggingface.co/new-space
2. Fill in:
- **Owner**: YOUR_USERNAME
- **Space name**: `fbmc-chronos2-forecast`
- **License**: MIT
- **Select SDK**: **JupyterLab**
- **Space hardware**: Click "Advanced" → Select **A10G GPU (24GB)** ($30/month)
- **Visibility**: **Private** (contains API keys)
3. Click "Create Space"
**IMPORTANT**: The Space will start building immediately. This takes ~10-15 minutes for first build.
### 2.2 Configure Space Secrets
While the Space is building:
1. Go to Space → Settings → Variables and Secrets
2. Add these secrets (click "New secret"):
| Name | Value | Description |
|------|-------|-------------|
| `HF_TOKEN` | `hf_...` | Your HuggingFace write token |
| `ENTSOE_API_KEY` | `your_key` | ENTSO-E Transparency API key |
3. Click "Save"
### 2.3 Wait for Initial Build
- Monitor build logs: Space → Logs tab
- Wait for message: "Your Space is up and running"
- This can take 10-15 minutes for first build
---
## STEP 3: Clone Space Locally (5 min)
### 3.1 Clone the Space Repository
```bash
# Navigate to projects directory
cd C:\Users\evgue\projects
# Clone the Space (replace YOUR_USERNAME)
git clone https://huggingface.co/spaces/YOUR_USERNAME/fbmc-chronos2-forecast
# Navigate into Space directory
cd fbmc-chronos2-forecast
```
### 3.2 Copy Project Files to Space
```bash
# Copy source code
cp -r ../fbmc_chronos2/src ./
# Copy requirements (rename to requirements.txt)
cp ../fbmc_chronos2/hf_space_requirements.txt ./requirements.txt
# Copy .env.example (for documentation)
cp ../fbmc_chronos2/.env.example ./
# Create directories
mkdir -p data/evaluation
mkdir -p notebooks
mkdir -p tests
```
### 3.3 Create Space README.md
Create `README.md` in the Space directory with:
```yaml
---
title: FBMC Chronos 2 Forecast
emoji: ⚡
colorFrom: blue
colorTo: green
sdk: jupyterlab
sdk_version: "4.0.0"
app_file: app.py
pinned: false
license: mit
hardware: a10g-small
---
# FBMC Flow Forecasting - Zero-Shot Inference
Amazon Chronos 2 for cross-border capacity forecasting.
## Features
- 2,553 features (615 future covariates)
- 38 bidirectional border targets (19 physical borders)
- 8,192-hour context window
- Dynamic date-driven inference
- A10G GPU acceleration
## Quick Start
### Launch JupyterLab
1. Open this Space
2. Wait for build to complete (~10-15 min first time)
3. Click "Open in JupyterLab"
### Run Inference
See `notebooks/01_test_inference.ipynb` for examples.
## Data Source
- **Dataset**: [YOUR_USERNAME/fbmc-features-24month](https://huggingface.co/datasets/YOUR_USERNAME/fbmc-features-24month)
- **Size**: 25 MB (17,544 hours × 2,553 features)
- **Period**: Oct 2023 - Sept 2025
## Model
- **Chronos 2 Large** (710M parameters)
- **Pretrained**: amazon/chronos-t5-large
- **Zero-shot**: No fine-tuning in MVP
## Cost
- A10G GPU: $30/month
- Storage: <1 GB (free tier)
```
### 3.4 Push Initial Files to Space
```bash
# Stage files
git add README.md requirements.txt .env.example src/
# Commit
git commit -m "feat: initial Space setup with A10G GPU and source code"
# Push to HuggingFace
git push
```
**IMPORTANT**: After pushing, the Space will rebuild (~10-15 min). Monitor the build in the Logs tab.
---
## STEP 4: Test Space Environment (10 min)
### 4.1 Wait for Build to Complete
- Go to Space → Logs tab
- Wait for: "Your Space is up and running"
- If build fails, check requirements.txt for dependency conflicts
### 4.2 Open JupyterLab
1. Go to your Space: https://huggingface.co/spaces/YOUR_USERNAME/fbmc-chronos2-forecast
2. Click "Open in JupyterLab" (top right)
3. JupyterLab will open in new tab
### 4.3 Create Test Notebook
In JupyterLab, create `notebooks/00_test_setup.ipynb`:
**Cell 1: Test GPU**
```python
import torch
print(f"GPU available: {torch.cuda.is_available()}")
print(f"GPU device: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'None'}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
```
Expected output:
```
GPU available: True
GPU device: NVIDIA A10G
GPU memory: 22.73 GB
```
**Cell 2: Load Dataset**
```python
from datasets import load_dataset
import polars as pl
# Load unified features from HF Dataset
dataset = load_dataset("YOUR_USERNAME/fbmc-features-24month", split="train")
df = pl.from_pandas(dataset.to_pandas())
print(f"Shape: {df.shape[0]:,} rows × {df.shape[1]:,} columns")
print(f"Columns: {df.columns[:10]}")
print(f"Date range: {df['timestamp'].min()} to {df['timestamp'].max()}")
```
Expected output:
```
Shape: 17,544 rows × 2,553 columns
Columns: ['timestamp', 'cnec_t1_binding_10T-DE-FR-000068', ...]
Date range: 2023-10-01 00:00:00 to 2025-09-30 23:00:00
```
**Cell 3: Load Metadata**
```python
import pandas as pd
# Load metadata
metadata = pd.read_csv(
"hf://datasets/YOUR_USERNAME/fbmc-features-24month/metadata.csv"
)
# Check future covariates
future_covs = metadata[metadata['is_future_covariate'] == 'true']['feature_name'].tolist()
print(f"Future covariates: {len(future_covs)}")
print(f"Historical features: {len(metadata) - len(future_covs)}")
print(f"\nCategories: {metadata['category'].unique()}")
```
Expected output:
```
Future covariates: 615
Historical features: 1,938
Categories: ['CNEC_Tier1', 'CNEC_Tier2', 'Weather', 'LTA', 'Temporal', ...]
```
**Cell 4: Test Chronos 2 Loading**
```python
from chronos import ChronosPipeline
# Load Chronos 2 Large (this will download ~3 GB on first run)
print("Loading Chronos 2 Large...")
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-large",
device_map="cuda",
torch_dtype=torch.bfloat16
)
print("[OK] Chronos 2 loaded successfully")
print(f"Model device: {pipeline.model.device}")
```
Expected output:
```
Loading Chronos 2 Large...
[OK] Chronos 2 loaded successfully
Model device: cuda:0
```
**IMPORTANT**: The first time you load Chronos 2, it will download ~3 GB. This takes 5-10 minutes. Subsequent runs will use cached model.
### 4.4 Run All Cells
- Execute all cells in order
- Verify all outputs match expected results
- If any cell fails, check error messages and troubleshoot
---
## STEP 5: Commit Test Notebook to Space
```bash
# In JupyterLab terminal or locally
git add notebooks/00_test_setup.ipynb
git commit -m "test: verify GPU, data loading, and Chronos 2 model"
git push
```
---
## Troubleshooting
### Build Fails
**Error**: `Collecting chronos-forecasting>=2.0.0: Could not find a version...`
- **Fix**: Check chronos-forecasting version exists on PyPI
- Try: `chronos-forecasting==2.0.0` (pin exact version)
**Error**: `torch 2.0.0 conflicts with transformers...`
- **Fix**: Pin compatible versions in requirements.txt
- Try: `torch==2.1.0` and `transformers==4.36.0`
### GPU Not Detected
**Issue**: `GPU available: False`
- **Check**: Space Settings → Hardware → Should show "A10G"
- **Fix**: Restart Space (Settings → Restart Space)
### Dataset Not Found
**Error**: `Repository Not Found for url: https://huggingface.co/datasets/...`
- **Check**: Dataset name matches in code
- **Fix**: Replace `YOUR_USERNAME` with actual HuggingFace username
- **Verify**: Dataset is public or HF_TOKEN is set in Space secrets
### Out of Memory
**Error**: `CUDA out of memory`
- **Cause**: A10G has 24 GB VRAM, may not be enough for 8,192 context + large batch
- **Fix**: Reduce context window to 512 hours temporarily
- **Fix**: Process borders in smaller batches (10 at a time)
---
## Next Steps (Day 3, Hours 5-8)
Once the test notebook runs successfully:
1. **Hour 5-6**: Create `src/inference/data_fetcher.py` (AsOfDateFetcher class)
2. **Hour 7-8**: Create `src/inference/chronos_pipeline.py` (ChronosForecaster class)
3. **Smoke test**: Run inference on 1 border × 7 days
See main implementation plan for details.
---
## Success Criteria
At end of STEP 5, you should have:
- [x] HF Dataset repository created and populated (3 files)
- [x] HF Space created with A10G GPU ($30/month)
- [x] Space secrets configured (HF_TOKEN, ENTSOE_API_KEY)
- [x] Source code pushed to Space
- [x] Space builds successfully (~10-15 min)
- [x] JupyterLab accessible
- [x] GPU detected (NVIDIA A10G, 22.73 GB)
- [x] Dataset loads (17,544 × 2,553)
- [x] Metadata loads (2,553 features, 615 future covariates)
- [x] Chronos 2 loads successfully (~3 GB download first time)
- [x] Test notebook committed to Space
**Estimated time**: ~40 minutes active work + ~25 minutes waiting for builds
---
**Questions?** Check HuggingFace Spaces documentation: https://huggingface.co/docs/hub/spaces
|