Spaces:
Sleeping
Sleeping
File size: 3,625 Bytes
3c8562f 8429ece 3c8562f 12f45c0 306322f 12f45c0 3c8562f 8429ece 12f45c0 0405814 8429ece 3c8562f 12f45c0 3c8562f 12f45c0 3c8562f 12f45c0 3c8562f 12f45c0 3c8562f 12f45c0 3c8562f 12f45c0 3c8562f 12f45c0 3c8562f 572e6a8 3c8562f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
title: FBMC Chronos-2 Forecasting
emoji: ⚡
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
tags:
- forecasting
- time-series
- electricity
- zero-shot
suggested_hardware: a100-large
suggested_storage: small
---
# FBMC Flow-Based Market Coupling Forecasting API
Zero-shot electricity cross-border flow forecasting for 38 European FBMC borders using Amazon Chronos-2.
## 🚀 Quick Start
This HuggingFace Space provides a **Gradio API** for GPU-accelerated zero-shot forecasting.
### How to Use (Web Interface)
1. **Select run date**: Choose the forecast date (YYYY-MM-DD format)
2. **Choose forecast type**:
- **Smoke Test**: 1 border × 7 days (~30 seconds)
- **Full Forecast**: All 38 borders × 14 days (~5 minutes)
3. **Click "Run Forecast"**
4. **Download results**: Parquet file with probabilistic forecasts
### How to Use (Python API)
```python
from gradio_client import Client
client = Client("evgueni-p/fbmc-chronos2")
result_file = client.predict(
run_date="2025-09-30",
forecast_type="smoke_test"
)
# Download and analyze locally
import polars as pl
df = pl.read_parquet(result_file)
print(df.head())
```
## 📊 Dataset
**Source**: [evgueni-p/fbmc-features-24month](https://huggingface.co/datasets/evgueni-p/fbmc-features-24month)
- **Rows**: 17,880 hourly observations
- **Date Range**: Oct 1, 2023 - Oct 14, 2025
- **Features**: 2,553 engineered features
- Weather: 375 features (52 grid points)
- ENTSO-E: ~1,863 features (generation, demand, prices, outages)
- JAO: 276 features (CNEC binding, RAM, utilization, LTA, net positions)
- Temporal: 39 features (hour, day, month, etc.)
- **Targets**: 38 FBMC cross-border flows (MW)
## 🔬 Model
**Amazon Chronos 2** (120M parameters)
- Pre-trained foundation model for time series
- Zero-shot inference (no fine-tuning)
- Multivariate forecasting with future covariates
- Dynamic time-aware data extraction (prevents leakage)
## ⚡ Hardware
**GPU**: NVIDIA A10G (24GB VRAM)
- Model inference: ~5 minutes for complete 14-day forecast
- Recommended for production workloads
## 📈 Performance Target
**D+1 MAE Goal**: <150 MW per border
This is a zero-shot baseline. Fine-tuning (Phase 2) expected to improve accuracy by 20-40%.
## 🔐 Requirements
Set `HF_TOKEN` in Space secrets to access the private dataset.
## 🛠️ Technical Details
### Feature Availability Windows
The system implements time-aware forecasting to prevent data leakage:
- **Full-horizon D+14** (603 features): Weather, CNEC outages, LTA
- **Partial D+1** (12 features): Load forecasts (masked D+2-D+14)
- **Historical only** (1,899 features): Prices, generation, demand
### Dynamic Forecast System
Uses `DynamicForecast` module to extract context and future covariates based on run date:
- Context window: 512 hours (historical data)
- Forecast horizon: 336 hours (14 days)
- Automatic masking for partial availability
## 📚 Documentation
- [Project Repository](https://github.com/evgspacdmy/fbmc_chronos2)
- [Activity Log](https://github.com/evgspacdmy/fbmc_chronos2/blob/main/doc/activity.md)
- [Feature Engineering Details](https://github.com/evgspacdmy/fbmc_chronos2/tree/main/src/feature_engineering)
## 🔄 Phase 2 Roadmap
Future improvements (not included in zero-shot MVP):
- Fine-tuning on FBMC data
- Ensemble methods
- Probabilistic forecasting
- Real-time data pipeline
- Production API
## 👤 Author
**Evgueni Poloukarov**
## 📄 License
MIT License - See LICENSE file for details
---
**Last Updated**: 2025-11-14
**Version**: 1.0.0 (Zero-Shot MVP)
|