File size: 3,625 Bytes
3c8562f
8429ece
3c8562f
 
 
12f45c0
306322f
12f45c0
3c8562f
8429ece
12f45c0
 
 
 
0405814
8429ece
3c8562f
 
12f45c0
3c8562f
12f45c0
3c8562f
 
 
12f45c0
3c8562f
12f45c0
3c8562f
12f45c0
 
 
 
 
 
3c8562f
12f45c0
3c8562f
12f45c0
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8562f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572e6a8
3c8562f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
title: FBMC Chronos-2 Forecasting
emoji: 
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
tags:
  - forecasting
  - time-series
  - electricity
  - zero-shot
suggested_hardware: a100-large
suggested_storage: small
---

# FBMC Flow-Based Market Coupling Forecasting API

Zero-shot electricity cross-border flow forecasting for 38 European FBMC borders using Amazon Chronos-2.

## 🚀 Quick Start

This HuggingFace Space provides a **Gradio API** for GPU-accelerated zero-shot forecasting.

### How to Use (Web Interface)

1. **Select run date**: Choose the forecast date (YYYY-MM-DD format)
2. **Choose forecast type**:
   - **Smoke Test**: 1 border × 7 days (~30 seconds)
   - **Full Forecast**: All 38 borders × 14 days (~5 minutes)
3. **Click "Run Forecast"**
4. **Download results**: Parquet file with probabilistic forecasts

### How to Use (Python API)

```python
from gradio_client import Client

client = Client("evgueni-p/fbmc-chronos2")
result_file = client.predict(
    run_date="2025-09-30",
    forecast_type="smoke_test"
)

# Download and analyze locally
import polars as pl
df = pl.read_parquet(result_file)
print(df.head())
```

## 📊 Dataset

**Source**: [evgueni-p/fbmc-features-24month](https://huggingface.co/datasets/evgueni-p/fbmc-features-24month)

- **Rows**: 17,880 hourly observations
- **Date Range**: Oct 1, 2023 - Oct 14, 2025
- **Features**: 2,553 engineered features
  - Weather: 375 features (52 grid points)
  - ENTSO-E: ~1,863 features (generation, demand, prices, outages)
  - JAO: 276 features (CNEC binding, RAM, utilization, LTA, net positions)
  - Temporal: 39 features (hour, day, month, etc.)

- **Targets**: 38 FBMC cross-border flows (MW)

## 🔬 Model

**Amazon Chronos 2** (120M parameters)
- Pre-trained foundation model for time series
- Zero-shot inference (no fine-tuning)
- Multivariate forecasting with future covariates
- Dynamic time-aware data extraction (prevents leakage)

## ⚡ Hardware

**GPU**: NVIDIA A10G (24GB VRAM)
- Model inference: ~5 minutes for complete 14-day forecast
- Recommended for production workloads

## 📈 Performance Target

**D+1 MAE Goal**: <150 MW per border

This is a zero-shot baseline. Fine-tuning (Phase 2) expected to improve accuracy by 20-40%.

## 🔐 Requirements

Set `HF_TOKEN` in Space secrets to access the private dataset.

## 🛠️ Technical Details

### Feature Availability Windows

The system implements time-aware forecasting to prevent data leakage:

- **Full-horizon D+14** (603 features): Weather, CNEC outages, LTA
- **Partial D+1** (12 features): Load forecasts (masked D+2-D+14)
- **Historical only** (1,899 features): Prices, generation, demand

### Dynamic Forecast System

Uses `DynamicForecast` module to extract context and future covariates based on run date:
- Context window: 512 hours (historical data)
- Forecast horizon: 336 hours (14 days)
- Automatic masking for partial availability

## 📚 Documentation

- [Project Repository](https://github.com/evgspacdmy/fbmc_chronos2)
- [Activity Log](https://github.com/evgspacdmy/fbmc_chronos2/blob/main/doc/activity.md)
- [Feature Engineering Details](https://github.com/evgspacdmy/fbmc_chronos2/tree/main/src/feature_engineering)

## 🔄 Phase 2 Roadmap

Future improvements (not included in zero-shot MVP):
- Fine-tuning on FBMC data
- Ensemble methods
- Probabilistic forecasting
- Real-time data pipeline
- Production API

## 👤 Author

**Evgueni Poloukarov**

## 📄 License

MIT License - See LICENSE file for details

---

**Last Updated**: 2025-11-14
**Version**: 1.0.0 (Zero-Shot MVP)