File size: 6,139 Bytes
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python3
"""
Smoke Test for Chronos 2 Zero-Shot Inference
Tests: 1 border × 7 days (168 hours)
"""

import time
import pandas as pd
import numpy as np
import polars as pl
from datetime import datetime, timedelta
from chronos import Chronos2Pipeline
import torch

print("="*60)
print("CHRONOS 2 ZERO-SHOT INFERENCE - SMOKE TEST")
print("="*60)

# Step 1: Load dataset
print("\n[1/6] Loading dataset from HuggingFace...")
start_time = time.time()

from datasets import load_dataset
import os

# Use HF token for private dataset access
hf_token = "<HF_TOKEN>"

dataset = load_dataset(
    "evgueni-p/fbmc-features-24month",
    split="train",
    token=hf_token
)
df = pl.from_pandas(dataset.to_pandas())

# Ensure timestamp is datetime (check if conversion needed)
if df['timestamp'].dtype == pl.String:
    df = df.with_columns(pl.col('timestamp').str.to_datetime())
elif df['timestamp'].dtype != pl.Datetime:
    df = df.with_columns(pl.col('timestamp').cast(pl.Datetime))

print(f"[OK] Loaded {len(df)} rows, {len(df.columns)} columns")
print(f"     Date range: {df['timestamp'].min()} to {df['timestamp'].max()}")
print(f"     Load time: {time.time() - start_time:.1f}s")

# Step 2: Identify target borders
print("\n[2/6] Identifying target borders...")
target_cols = [col for col in df.columns if col.startswith('target_border_')]
borders = [col.replace('target_border_', '') for col in target_cols]
print(f"[OK] Found {len(borders)} borders")

# Select first border for test
test_border = borders[0]
print(f"[*] Test border: {test_border}")

# Step 3: Prepare test data
print("\n[3/6] Preparing test data...")
# Use last available date as forecast date
forecast_date = df['timestamp'].max()
context_hours = 512
prediction_hours = 168  # 7 days

# Get context data
context_start = forecast_date - timedelta(hours=context_hours)
context_df = df.filter(
    (pl.col('timestamp') >= context_start) &
    (pl.col('timestamp') < forecast_date)
)

print(f"[OK] Context: {len(context_df)} hours ({context_start} to {forecast_date})")

# Prepare context DataFrame for Chronos
target_col = f'target_border_{test_border}'
context_data = context_df.select([
    'timestamp',
    pl.lit(test_border).alias('border'),
    pl.col(target_col).alias('target')
]).to_pandas()

# Simple future covariates (just timestamp and border for smoke test)
future_timestamps = pd.date_range(
    start=forecast_date,
    periods=prediction_hours,
    freq='H'
)
future_data = pd.DataFrame({
    'timestamp': future_timestamps,
    'border': [test_border] * prediction_hours,
    'target': [np.nan] * prediction_hours  # NaN for future values to predict
})

print(f"[OK] Future: {len(future_data)} hours")
print(f"     Context shape: {context_data.shape}")
print(f"     Future shape: {future_data.shape}")

# Step 4: Load model
print("\n[4/6] Loading Chronos 2 model on GPU...")
model_start = time.time()

pipeline = Chronos2Pipeline.from_pretrained(
    'amazon/chronos-2',
    device_map='cuda',
    dtype=torch.float32
)

model_time = time.time() - model_start
print(f"[OK] Model loaded in {model_time:.1f}s")
print(f"     Device: {next(pipeline.model.parameters()).device}")

# Step 5: Run inference
print(f"\n[5/6] Running zero-shot inference...")
print(f"      Border: {test_border}")
print(f"      Prediction: {prediction_hours} hours (7 days)")
print(f"      Samples: 100 (for probabilistic forecast)")

inference_start = time.time()

try:
    # Combine context and future data
    combined_df = pd.concat([context_data, future_data], ignore_index=True)

    forecasts = pipeline.predict_df(
        df=combined_df,
        prediction_length=prediction_hours,
        id_column='border',
        timestamp_column='timestamp',
        target='target'
    )

    inference_time = time.time() - inference_start

    print(f"[OK] Inference complete in {inference_time:.1f}s")
    print(f"     Forecast shape: {forecasts.shape}")

    # Step 6: Validate results
    print("\n[6/6] Validating results...")

    # Check for NaN values
    nan_count = forecasts.isna().sum().sum()
    print(f"     NaN values: {nan_count}")

    if 'mean' in forecasts.columns:
        mean_forecast = forecasts['mean']
        print(f"     Forecast statistics:")
        print(f"       Mean: {mean_forecast.mean():.2f} MW")
        print(f"       Min: {mean_forecast.min():.2f} MW")
        print(f"       Max: {mean_forecast.max():.2f} MW")
        print(f"       Std: {mean_forecast.std():.2f} MW")

        # Sanity checks
        if mean_forecast.min() < 0:
            print("     [!] WARNING: Negative forecasts detected")
        if mean_forecast.max() > 20000:
            print("     [!] WARNING: Unreasonably high forecasts")
        if nan_count == 0 and mean_forecast.min() >= 0 and mean_forecast.max() < 20000:
            print("     [OK] Validation passed!")

    # Performance summary
    print("\n" + "="*60)
    print("SMOKE TEST SUMMARY")
    print("="*60)
    print(f"Border tested: {test_border}")
    print(f"Forecast length: {prediction_hours} hours (7 days)")
    print(f"Inference time: {inference_time:.1f}s")
    print(f"Speed: {prediction_hours / inference_time:.1f} hours/second")

    # Estimate full run time
    total_borders = len(borders)
    full_forecast_hours = 336  # 14 days
    estimated_time = (inference_time / prediction_hours) * full_forecast_hours * total_borders
    print(f"\nEstimated time for full run:")
    print(f"  {total_borders} borders × {full_forecast_hours} hours")
    print(f"  = {estimated_time / 60:.1f} minutes ({estimated_time / 3600:.1f} hours)")

    # Target check
    if inference_time < 300:  # 5 minutes
        print(f"\n[OK] Performance target met! (<5 min for 7-day forecast)")
    else:
        print(f"\n[!] Performance slower than target (expected <5 min)")

    print("="*60)
    print("[OK] SMOKE TEST PASSED!")
    print("="*60)

except Exception as e:
    print(f"\n[ERROR] Inference failed: {e}")
    import traceback
    traceback.print_exc()
    exit(1)

# Total time
total_time = time.time() - start_time
print(f"\nTotal test time: {total_time:.1f}s ({total_time / 60:.1f} min)")