Spaces:
Sleeping
Sleeping
File size: 7,786 Bytes
74bde7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
#!/usr/bin/env python3
"""
Full Inference Run for Chronos 2 Zero-Shot Forecasting
Generates 14-day forecasts for all 38 FBMC borders
"""
import time
import pandas as pd
import numpy as np
import polars as pl
from datetime import datetime, timedelta
from chronos import Chronos2Pipeline
import torch
print("="*60)
print("CHRONOS 2 FULL INFERENCE - ALL BORDERS")
print("="*60)
total_start = time.time()
# Step 1: Load dataset
print("\n[1/7] Loading dataset from HuggingFace...")
start_time = time.time()
from datasets import load_dataset
import os
# Use HF token for private dataset access
hf_token = "<HF_TOKEN>"
dataset = load_dataset(
"evgueni-p/fbmc-features-24month",
split="train",
token=hf_token
)
df = pl.from_pandas(dataset.to_pandas())
# Ensure timestamp is datetime (check if conversion needed)
if df['timestamp'].dtype == pl.String:
df = df.with_columns(pl.col('timestamp').str.to_datetime())
elif df['timestamp'].dtype != pl.Datetime:
df = df.with_columns(pl.col('timestamp').cast(pl.Datetime))
print(f"[OK] Loaded {len(df)} rows, {len(df.columns)} columns")
print(f" Date range: {df['timestamp'].min()} to {df['timestamp'].max()}")
print(f" Load time: {time.time() - start_time:.1f}s")
# Step 2: Identify all target borders
print("\n[2/7] Identifying target borders...")
target_cols = [col for col in df.columns if col.startswith('target_border_')]
borders = [col.replace('target_border_', '') for col in target_cols]
print(f"[OK] Found {len(borders)} borders")
print(f" Borders: {', '.join(borders[:5])}... (showing first 5)")
# Step 3: Prepare forecast parameters
print("\n[3/7] Setting up forecast parameters...")
forecast_date = df['timestamp'].max()
context_hours = 512
prediction_hours = 336 # 14 days
print(f" Forecast date: {forecast_date}")
print(f" Context window: {context_hours} hours")
print(f" Prediction horizon: {prediction_hours} hours (14 days)")
# Step 4: Load model
print("\n[4/7] Loading Chronos 2 model on GPU...")
model_start = time.time()
pipeline = Chronos2Pipeline.from_pretrained(
'amazon/chronos-2',
device_map='cuda',
dtype=torch.float32
)
model_time = time.time() - model_start
print(f"[OK] Model loaded in {model_time:.1f}s")
print(f" Device: {next(pipeline.model.parameters()).device}")
# Step 5: Run inference for all borders
print(f"\n[5/7] Running zero-shot inference for {len(borders)} borders...")
print(f" Prediction: {prediction_hours} hours (14 days) per border")
print(f" Progress:")
all_forecasts = []
inference_times = []
for i, border in enumerate(borders, 1):
border_start = time.time()
# Get context data
context_start = forecast_date - timedelta(hours=context_hours)
context_df = df.filter(
(pl.col('timestamp') >= context_start) &
(pl.col('timestamp') < forecast_date)
)
# Prepare context DataFrame
target_col = f'target_border_{border}'
context_data = context_df.select([
'timestamp',
pl.lit(border).alias('border'),
pl.col(target_col).alias('target')
]).to_pandas()
# Prepare future data
future_timestamps = pd.date_range(
start=forecast_date,
periods=prediction_hours,
freq='h'
)
future_data = pd.DataFrame({
'timestamp': future_timestamps,
'border': [border] * prediction_hours,
'target': [np.nan] * prediction_hours
})
# Combine and predict
combined_df = pd.concat([context_data, future_data], ignore_index=True)
try:
forecasts = pipeline.predict_df(
df=combined_df,
prediction_length=prediction_hours,
id_column='border',
timestamp_column='timestamp',
target='target'
)
# Add border identifier
forecasts['border'] = border
all_forecasts.append(forecasts)
border_time = time.time() - border_start
inference_times.append(border_time)
print(f" [{i:2d}/{len(borders)}] {border:15s} - {border_time:.2f}s")
except Exception as e:
print(f" [{i:2d}/{len(borders)}] {border:15s} - FAILED: {e}")
inference_time = time.time() - model_start - model_time
print(f"\n[OK] Inference complete!")
print(f" Total inference time: {inference_time:.1f}s")
print(f" Average per border: {np.mean(inference_times):.2f}s")
print(f" Successful forecasts: {len(all_forecasts)}/{len(borders)}")
# Step 6: Combine and save results
print("\n[6/7] Saving forecast results...")
if all_forecasts:
# Combine all forecasts
combined_forecasts = pd.concat(all_forecasts, ignore_index=True)
# Save as parquet (efficient, compressed)
output_file = '/tmp/chronos2_forecasts_14day.parquet'
combined_forecasts.to_parquet(output_file)
print(f"[OK] Forecasts saved to: {output_file}")
print(f" Shape: {combined_forecasts.shape}")
print(f" Columns: {list(combined_forecasts.columns)}")
print(f" File size: {os.path.getsize(output_file) / 1024 / 1024:.2f} MB")
# Save summary statistics
summary_file = '/tmp/chronos2_forecast_summary.csv'
summary_data = []
for border in borders:
border_forecasts = combined_forecasts[combined_forecasts['border'] == border]
if len(border_forecasts) > 0 and 'mean' in border_forecasts.columns:
summary_data.append({
'border': border,
'forecast_points': len(border_forecasts),
'mean_forecast': border_forecasts['mean'].mean(),
'min_forecast': border_forecasts['mean'].min(),
'max_forecast': border_forecasts['mean'].max(),
'std_forecast': border_forecasts['mean'].std()
})
summary_df = pd.DataFrame(summary_data)
summary_df.to_csv(summary_file, index=False)
print(f"[OK] Summary saved to: {summary_file}")
else:
print("[!] No successful forecasts to save")
# Step 7: Validation
print("\n[7/7] Validating results...")
if all_forecasts:
# Check for NaN values
nan_count = combined_forecasts.isna().sum().sum()
print(f" NaN values: {nan_count}")
# Sanity checks on mean forecast
if 'mean' in combined_forecasts.columns:
mean_forecast = combined_forecasts['mean']
print(f" Overall statistics:")
print(f" Mean: {mean_forecast.mean():.2f} MW")
print(f" Min: {mean_forecast.min():.2f} MW")
print(f" Max: {mean_forecast.max():.2f} MW")
print(f" Std: {mean_forecast.std():.2f} MW")
# Warnings
if mean_forecast.min() < 0:
print(" [!] WARNING: Negative forecasts detected")
if mean_forecast.max() > 20000:
print(" [!] WARNING: Unreasonably high forecasts")
if nan_count == 0 and mean_forecast.min() >= 0 and mean_forecast.max() < 20000:
print(" [OK] Validation passed!")
# Performance summary
print("\n" + "="*60)
print("FULL INFERENCE SUMMARY")
print("="*60)
print(f"Borders forecasted: {len(all_forecasts)}/{len(borders)}")
print(f"Forecast horizon: {prediction_hours} hours (14 days)")
print(f"Total inference time: {inference_time:.1f}s ({inference_time / 60:.2f} min)")
print(f"Average per border: {np.mean(inference_times):.2f}s")
print(f"Speed: {prediction_hours * len(all_forecasts) / inference_time:.1f} hours/second")
# Target check
if inference_time < 300: # 5 minutes
print(f"\n[OK] Performance target met! (<5 min for full run)")
else:
print(f"\n[!] Performance slower than target (expected <5 min)")
print("="*60)
print("[OK] FULL INFERENCE COMPLETE!")
print("="*60)
# Total time
total_time = time.time() - total_start
print(f"\nTotal execution time: {total_time:.1f}s ({total_time / 60:.1f} min)")
|