Spaces:
Sleeping
Sleeping
File size: 7,858 Bytes
74bde7a f4be780 74bde7a e5f4fec 74bde7a f4be780 74bde7a f4be780 74bde7a dfe40ac 74bde7a dfe40ac 74bde7a f4be780 dfe40ac 74bde7a f4be780 74bde7a f4be780 74bde7a f4be780 74bde7a c685a02 74bde7a c685a02 74bde7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#!/usr/bin/env python3
"""
Smoke Test for Chronos 2 Zero-Shot Inference
Tests: 1 border × 7 days (168 hours)
"""
import time
import pandas as pd
import numpy as np
import polars as pl
from datetime import datetime, timedelta
from chronos import Chronos2Pipeline
import torch
from src.forecasting.feature_availability import FeatureAvailability
from src.forecasting.dynamic_forecast import DynamicForecast
print("="*60)
print("CHRONOS 2 ZERO-SHOT INFERENCE - SMOKE TEST")
print("="*60)
# Step 1: Load dataset
print("\n[1/6] Loading dataset from HuggingFace...")
start_time = time.time()
from datasets import load_dataset
import os
# Use HF token for private dataset access
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN not found in environment. Please set HF_TOKEN.")
dataset = load_dataset(
"evgueni-p/fbmc-features-24month",
split="train",
token=hf_token
)
df = pl.from_pandas(dataset.to_pandas())
# Ensure timestamp is datetime (check if conversion needed)
if df['timestamp'].dtype == pl.String:
df = df.with_columns(pl.col('timestamp').str.to_datetime())
elif df['timestamp'].dtype != pl.Datetime:
df = df.with_columns(pl.col('timestamp').cast(pl.Datetime))
print(f"[OK] Loaded {len(df)} rows, {len(df.columns)} columns")
print(f" Date range: {df['timestamp'].min()} to {df['timestamp'].max()}")
print(f" Load time: {time.time() - start_time:.1f}s")
# Feature categorization using FeatureAvailability module
print("\n[Feature Categorization]")
categories = FeatureAvailability.categorize_features(df.columns)
# Validate categorization
is_valid, warnings = FeatureAvailability.validate_categorization(categories, verbose=False)
# Report categories
print(f" Full-horizon D+14: {len(categories['full_horizon_d14'])} (temporal + weather + outages + LTA)")
print(f" Partial D+1: {len(categories['partial_d1'])} (load forecasts)")
print(f" Historical only: {len(categories['historical'])} (prices, generation, demand, lags, etc.)")
print(f" Total features: {sum(len(v) for v in categories.values())}")
if not is_valid:
print("\n[!] WARNING: Feature categorization issues:")
for w in warnings:
print(f" - {w}")
# For Chronos-2: combine full+partial for future covariates
# (Chronos-2 supports partial availability via masking)
known_future_cols = categories['full_horizon_d14'] + categories['partial_d1']
past_only_cols = categories['historical']
# Step 2: Identify target borders
print("\n[2/6] Identifying target borders...")
target_cols = [col for col in df.columns if col.startswith('target_border_')]
borders = [col.replace('target_border_', '') for col in target_cols]
print(f"[OK] Found {len(borders)} borders")
# Select first border for test
test_border = borders[0]
print(f"[*] Test border: {test_border}")
# Step 3: Prepare test data with DynamicForecast
print("\n[3/6] Preparing test data...")
# Use a date that has 7 days of future data available
# Dataset ends at 2025-09-30 23:00, so we need run_date such that
# forecast ends at most at 2025-09-30 23:00
# For 168 hours (7 days), run_date should be at most 2025-09-23 23:00
prediction_hours = 168 # 7 days
max_date = df['timestamp'].max()
run_date = max_date - timedelta(hours=prediction_hours)
context_hours = 512
print(f" Run date: {run_date}")
print(f" Context: {context_hours} hours (historical)")
print(f" Forecast: {prediction_hours} hours (7 days, D+1 to D+7)")
print(f" Forecast range: {run_date + timedelta(hours=1)} to {run_date + timedelta(hours=prediction_hours)}")
# Initialize DynamicForecast
forecaster = DynamicForecast(
dataset=df,
context_hours=context_hours,
forecast_hours=prediction_hours
)
# Prepare data with time-aware extraction
context_data, future_data = forecaster.prepare_forecast_data(run_date, test_border)
# Validate no data leakage
is_valid, errors = forecaster.validate_no_leakage(context_data, future_data, run_date)
if not is_valid:
print("\n[ERROR] Data leakage detected:")
for err in errors:
print(f" - {err}")
exit(1)
print(f"[OK] Data preparation complete (leakage validation passed)")
print(f" Context shape: {context_data.shape}")
print(f" Future shape: {future_data.shape}")
print(f" Context dates: {context_data['timestamp'].min()} to {context_data['timestamp'].max()}")
print(f" Future dates: {future_data['timestamp'].min()} to {future_data['timestamp'].max()}")
# Step 4: Load model
print("\n[4/6] Loading Chronos 2 model on GPU...")
model_start = time.time()
pipeline = Chronos2Pipeline.from_pretrained(
'amazon/chronos-2',
device_map='cuda',
dtype=torch.float32
)
model_time = time.time() - model_start
print(f"[OK] Model loaded in {model_time:.1f}s")
print(f" Device: {next(pipeline.model.parameters()).device}")
# Step 5: Run inference
print(f"\n[5/6] Running zero-shot inference...")
print(f" Border: {test_border}")
print(f" Prediction: {prediction_hours} hours (7 days)")
print(f" Samples: 100 (for probabilistic forecast)")
inference_start = time.time()
try:
# Call API with separate context and future dataframes
forecasts = pipeline.predict_df(
context_data, # Historical data (positional parameter)
future_df=future_data, # Future covariates (named parameter)
prediction_length=prediction_hours,
id_column='border',
timestamp_column='timestamp',
target='target'
)
inference_time = time.time() - inference_start
print(f"[OK] Inference complete in {inference_time:.1f}s")
print(f" Forecast shape: {forecasts.shape}")
# Step 6: Validate results
print("\n[6/6] Validating results...")
# Check for NaN values
nan_count = forecasts.isna().sum().sum()
print(f" NaN values: {nan_count}")
if 'mean' in forecasts.columns:
mean_forecast = forecasts['mean']
print(f" Forecast statistics:")
print(f" Mean: {mean_forecast.mean():.2f} MW")
print(f" Min: {mean_forecast.min():.2f} MW")
print(f" Max: {mean_forecast.max():.2f} MW")
print(f" Std: {mean_forecast.std():.2f} MW")
# Sanity checks
if mean_forecast.min() < 0:
print(" [!] WARNING: Negative forecasts detected")
if mean_forecast.max() > 20000:
print(" [!] WARNING: Unreasonably high forecasts")
if nan_count == 0 and mean_forecast.min() >= 0 and mean_forecast.max() < 20000:
print(" [OK] Validation passed!")
# Performance summary
print("\n" + "="*60)
print("SMOKE TEST SUMMARY")
print("="*60)
print(f"Border tested: {test_border}")
print(f"Forecast length: {prediction_hours} hours (7 days)")
print(f"Inference time: {inference_time:.1f}s")
print(f"Speed: {prediction_hours / inference_time:.1f} hours/second")
# Estimate full run time
total_borders = len(borders)
full_forecast_hours = 336 # 14 days
estimated_time = (inference_time / prediction_hours) * full_forecast_hours * total_borders
print(f"\nEstimated time for full run:")
print(f" {total_borders} borders × {full_forecast_hours} hours")
print(f" = {estimated_time / 60:.1f} minutes ({estimated_time / 3600:.1f} hours)")
# Target check
if inference_time < 300: # 5 minutes
print(f"\n[OK] Performance target met! (<5 min for 7-day forecast)")
else:
print(f"\n[!] Performance slower than target (expected <5 min)")
print("="*60)
print("[OK] SMOKE TEST PASSED!")
print("="*60)
except Exception as e:
print(f"\n[ERROR] Inference failed: {e}")
import traceback
traceback.print_exc()
exit(1)
# Total time
total_time = time.time() - start_time
print(f"\nTotal test time: {total_time:.1f}s ({total_time / 60:.1f} min)")
|