File size: 7,858 Bytes
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
f4be780
 
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
e5f4fec
 
 
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4be780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74bde7a
 
 
 
 
 
 
 
 
 
f4be780
74bde7a
dfe40ac
 
 
 
74bde7a
dfe40ac
 
 
74bde7a
f4be780
 
 
dfe40ac
74bde7a
f4be780
 
 
 
 
74bde7a
 
f4be780
 
 
 
 
 
 
 
 
 
 
 
74bde7a
 
f4be780
 
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c685a02
74bde7a
c685a02
 
74bde7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python3
"""
Smoke Test for Chronos 2 Zero-Shot Inference
Tests: 1 border × 7 days (168 hours)
"""

import time
import pandas as pd
import numpy as np
import polars as pl
from datetime import datetime, timedelta
from chronos import Chronos2Pipeline
import torch
from src.forecasting.feature_availability import FeatureAvailability
from src.forecasting.dynamic_forecast import DynamicForecast

print("="*60)
print("CHRONOS 2 ZERO-SHOT INFERENCE - SMOKE TEST")
print("="*60)

# Step 1: Load dataset
print("\n[1/6] Loading dataset from HuggingFace...")
start_time = time.time()

from datasets import load_dataset
import os

# Use HF token for private dataset access
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
    raise ValueError("HF_TOKEN not found in environment. Please set HF_TOKEN.")

dataset = load_dataset(
    "evgueni-p/fbmc-features-24month",
    split="train",
    token=hf_token
)
df = pl.from_pandas(dataset.to_pandas())

# Ensure timestamp is datetime (check if conversion needed)
if df['timestamp'].dtype == pl.String:
    df = df.with_columns(pl.col('timestamp').str.to_datetime())
elif df['timestamp'].dtype != pl.Datetime:
    df = df.with_columns(pl.col('timestamp').cast(pl.Datetime))

print(f"[OK] Loaded {len(df)} rows, {len(df.columns)} columns")
print(f"     Date range: {df['timestamp'].min()} to {df['timestamp'].max()}")
print(f"     Load time: {time.time() - start_time:.1f}s")

# Feature categorization using FeatureAvailability module
print("\n[Feature Categorization]")
categories = FeatureAvailability.categorize_features(df.columns)

# Validate categorization
is_valid, warnings = FeatureAvailability.validate_categorization(categories, verbose=False)

# Report categories
print(f"  Full-horizon D+14:  {len(categories['full_horizon_d14'])} (temporal + weather + outages + LTA)")
print(f"  Partial D+1:        {len(categories['partial_d1'])} (load forecasts)")
print(f"  Historical only:    {len(categories['historical'])} (prices, generation, demand, lags, etc.)")
print(f"  Total features:     {sum(len(v) for v in categories.values())}")

if not is_valid:
    print("\n[!] WARNING: Feature categorization issues:")
    for w in warnings:
        print(f"    - {w}")

# For Chronos-2: combine full+partial for future covariates
# (Chronos-2 supports partial availability via masking)
known_future_cols = categories['full_horizon_d14'] + categories['partial_d1']
past_only_cols = categories['historical']

# Step 2: Identify target borders
print("\n[2/6] Identifying target borders...")
target_cols = [col for col in df.columns if col.startswith('target_border_')]
borders = [col.replace('target_border_', '') for col in target_cols]
print(f"[OK] Found {len(borders)} borders")

# Select first border for test
test_border = borders[0]
print(f"[*] Test border: {test_border}")

# Step 3: Prepare test data with DynamicForecast
print("\n[3/6] Preparing test data...")
# Use a date that has 7 days of future data available
# Dataset ends at 2025-09-30 23:00, so we need run_date such that
# forecast ends at most at 2025-09-30 23:00
# For 168 hours (7 days), run_date should be at most 2025-09-23 23:00
prediction_hours = 168  # 7 days
max_date = df['timestamp'].max()
run_date = max_date - timedelta(hours=prediction_hours)
context_hours = 512

print(f"     Run date: {run_date}")
print(f"     Context: {context_hours} hours (historical)")
print(f"     Forecast: {prediction_hours} hours (7 days, D+1 to D+7)")
print(f"     Forecast range: {run_date + timedelta(hours=1)} to {run_date + timedelta(hours=prediction_hours)}")

# Initialize DynamicForecast
forecaster = DynamicForecast(
    dataset=df,
    context_hours=context_hours,
    forecast_hours=prediction_hours
)

# Prepare data with time-aware extraction
context_data, future_data = forecaster.prepare_forecast_data(run_date, test_border)

# Validate no data leakage
is_valid, errors = forecaster.validate_no_leakage(context_data, future_data, run_date)
if not is_valid:
    print("\n[ERROR] Data leakage detected:")
    for err in errors:
        print(f"    - {err}")
    exit(1)

print(f"[OK] Data preparation complete (leakage validation passed)")
print(f"     Context shape: {context_data.shape}")
print(f"     Future shape: {future_data.shape}")
print(f"     Context dates: {context_data['timestamp'].min()} to {context_data['timestamp'].max()}")
print(f"     Future dates: {future_data['timestamp'].min()} to {future_data['timestamp'].max()}")

# Step 4: Load model
print("\n[4/6] Loading Chronos 2 model on GPU...")
model_start = time.time()

pipeline = Chronos2Pipeline.from_pretrained(
    'amazon/chronos-2',
    device_map='cuda',
    dtype=torch.float32
)

model_time = time.time() - model_start
print(f"[OK] Model loaded in {model_time:.1f}s")
print(f"     Device: {next(pipeline.model.parameters()).device}")

# Step 5: Run inference
print(f"\n[5/6] Running zero-shot inference...")
print(f"      Border: {test_border}")
print(f"      Prediction: {prediction_hours} hours (7 days)")
print(f"      Samples: 100 (for probabilistic forecast)")

inference_start = time.time()

try:
    # Call API with separate context and future dataframes
    forecasts = pipeline.predict_df(
        context_data,  # Historical data (positional parameter)
        future_df=future_data,  # Future covariates (named parameter)
        prediction_length=prediction_hours,
        id_column='border',
        timestamp_column='timestamp',
        target='target'
    )

    inference_time = time.time() - inference_start

    print(f"[OK] Inference complete in {inference_time:.1f}s")
    print(f"     Forecast shape: {forecasts.shape}")

    # Step 6: Validate results
    print("\n[6/6] Validating results...")

    # Check for NaN values
    nan_count = forecasts.isna().sum().sum()
    print(f"     NaN values: {nan_count}")

    if 'mean' in forecasts.columns:
        mean_forecast = forecasts['mean']
        print(f"     Forecast statistics:")
        print(f"       Mean: {mean_forecast.mean():.2f} MW")
        print(f"       Min: {mean_forecast.min():.2f} MW")
        print(f"       Max: {mean_forecast.max():.2f} MW")
        print(f"       Std: {mean_forecast.std():.2f} MW")

        # Sanity checks
        if mean_forecast.min() < 0:
            print("     [!] WARNING: Negative forecasts detected")
        if mean_forecast.max() > 20000:
            print("     [!] WARNING: Unreasonably high forecasts")
        if nan_count == 0 and mean_forecast.min() >= 0 and mean_forecast.max() < 20000:
            print("     [OK] Validation passed!")

    # Performance summary
    print("\n" + "="*60)
    print("SMOKE TEST SUMMARY")
    print("="*60)
    print(f"Border tested: {test_border}")
    print(f"Forecast length: {prediction_hours} hours (7 days)")
    print(f"Inference time: {inference_time:.1f}s")
    print(f"Speed: {prediction_hours / inference_time:.1f} hours/second")

    # Estimate full run time
    total_borders = len(borders)
    full_forecast_hours = 336  # 14 days
    estimated_time = (inference_time / prediction_hours) * full_forecast_hours * total_borders
    print(f"\nEstimated time for full run:")
    print(f"  {total_borders} borders × {full_forecast_hours} hours")
    print(f"  = {estimated_time / 60:.1f} minutes ({estimated_time / 3600:.1f} hours)")

    # Target check
    if inference_time < 300:  # 5 minutes
        print(f"\n[OK] Performance target met! (<5 min for 7-day forecast)")
    else:
        print(f"\n[!] Performance slower than target (expected <5 min)")

    print("="*60)
    print("[OK] SMOKE TEST PASSED!")
    print("="*60)

except Exception as e:
    print(f"\n[ERROR] Inference failed: {e}")
    import traceback
    traceback.print_exc()
    exit(1)

# Total time
total_time = time.time() - start_time
print(f"\nTotal test time: {total_time:.1f}s ({total_time / 60:.1f} min)")