File size: 13,516 Bytes
7f2c237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import marimo

__generated_with = "0.17.2"
app = marimo.App(width="medium")


@app.cell
def imports_and_setup():
    """Import libraries and set up paths."""
    import marimo as mo
    import polars as pl
    import altair as alt
    from pathlib import Path
    from datetime import datetime
    import numpy as np

    # Set up absolute paths
    project_root = Path(__file__).parent.parent
    return alt, datetime, mo, pl, project_root


@app.cell
def load_september_2025_data(datetime, pl, project_root):
    """Load September 2025 forecast results and actuals."""

    # Load actuals from HuggingFace dataset (ground truth)
    print('[INFO] Loading actuals from HuggingFace dataset...')
    from datasets import load_dataset
    import os

    dataset = load_dataset('evgueni-p/fbmc-features-24month', split='train', token=os.environ.get('HF_TOKEN'))
    df_actuals_full = pl.from_arrow(dataset.data.table)
    print(f'[INFO] HF dataset loaded: {df_actuals_full.shape}')

    # Load forecast results (full 14-day forecast with 132 borders)
    forecast_path = project_root / 'results' / 'september_2025_forecast_full_14day.parquet'

    if not forecast_path.exists():
        raise FileNotFoundError(f'Forecast file not found: {forecast_path}. Run September 2025 forecast first.')

    df_forecast_full = pl.read_parquet(forecast_path)
    print(f'[INFO] Forecast loaded: {df_forecast_full.shape}')
    print(f'[INFO] Forecast dates: {df_forecast_full["timestamp"].min()} to {df_forecast_full["timestamp"].max()}')

    # Filter actuals to September 2025 period (Aug 18 - Sept 15 for context + forecast period)
    start_date = datetime(2025, 8, 18)  # 2 weeks before forecast
    end_date = datetime(2025, 9, 16)     # Through end of forecast period

    df_actuals_filtered = df_actuals_full.filter(
        (pl.col('timestamp') >= start_date) &
        (pl.col('timestamp') < end_date)
    )

    print(f'[INFO] Actuals filtered: {df_actuals_filtered.shape[0]} hours (Aug 18 - Sept 15, 2025)')

    # Forecast period for evaluation
    forecast_start = datetime(2025, 9, 2)
    return df_actuals_filtered, df_forecast_full


@app.cell
def prepare_unified_dataframe(
    datetime,
    df_actuals_filtered,
    df_forecast_full,
    pl,
):
    """Prepare unified dataframe with forecast and actual pairs for ALL FBMC borders."""

    # Extract ALL border names from forecast columns (132 directional borders)
    # Includes both physical interconnectors and virtual trading paths
    forecast_cols_list = [col for col in df_forecast_full.columns if col.endswith('_median')]
    border_names_list = [col.replace('_median', '') for col in forecast_cols_list]

    print(f'[INFO] Processing {len(border_names_list)} FBMC borders (all directional trading paths)...')
    print(f'[INFO] Sample borders: {sorted(border_names_list)[:10]}...')

    # Start with timestamp from actuals
    df_unified_data = df_actuals_filtered.select('timestamp')

    # Add actual and forecast for each border
    for border in border_names_list:
        actual_col_source = f'target_border_{border}'
        forecast_col_source = f'{border}_median'

        # Add actuals
        if actual_col_source in df_actuals_filtered.columns:
            df_unified_data = df_unified_data.with_columns(
                df_actuals_filtered[actual_col_source].alias(f'actual_{border}')
            )
        else:
            print(f'[WARNING] Actual column missing: {actual_col_source}')
            df_unified_data = df_unified_data.with_columns(pl.lit(None).alias(f'actual_{border}'))

        # Add forecasts (join on timestamp)
        if forecast_col_source in df_forecast_full.columns:
            df_forecast_subset = df_forecast_full.select(['timestamp', forecast_col_source])
            df_unified_data = df_unified_data.join(
                df_forecast_subset,
                on='timestamp',
                how='left'
            ).rename({forecast_col_source: f'forecast_{border}'})
        else:
            print(f'[WARNING] Forecast column missing: {forecast_col_source}')
            df_unified_data = df_unified_data.with_columns(pl.lit(None).alias(f'forecast_{border}'))

    print(f'[INFO] Unified data prepared: {df_unified_data.shape}')

    # Validate no data leakage - check that forecasts don't perfectly match actuals
    sample_border = border_names_list[0]
    forecast_col_check = f'forecast_{sample_border}'
    actual_col_check = f'actual_{sample_border}'

    if forecast_col_check in df_unified_data.columns and actual_col_check in df_unified_data.columns:
        _forecast_start_check = datetime(2025, 9, 2)
        _df_forecast_check = df_unified_data.filter(pl.col('timestamp') >= _forecast_start_check)

        if len(_df_forecast_check) > 0:
            mae_check = (_df_forecast_check[forecast_col_check] - _df_forecast_check[actual_col_check]).abs().mean()
            if mae_check == 0:
                raise ValueError(f'DATA LEAKAGE DETECTED: Forecasts perfectly match actuals (MAE=0) for {sample_border}!')

    print('[INFO] Data leakage check passed - forecasts differ from actuals')
    return border_names_list, df_unified_data


@app.cell
def create_border_selector(border_names_list, mo):
    """Create interactive border selection dropdown."""

    border_selector_widget = mo.ui.dropdown(
        options={border: border for border in sorted(border_names_list)},
        value='CZ_PL',  # Default to Polish border to showcase fix
        label='Select Border:'
    )
    return (border_selector_widget,)


@app.cell
def display_border_selector(border_selector_widget, mo):
    """Display the border selector UI."""
    mo.md(f"""
    ## Forecast Validation: September 2025 (All FBMC Borders)

    **Select a border to view:**
    {border_selector_widget}

    Chart shows:
    - **2 weeks historical** (Aug 18 - Sept 1, 2025): Actual flows only
    - **2 weeks forecast** (Sept 2-15, 2025): Forecast vs Actual comparison
    - **Context**: 336 hours forecast period (14 days)
    - **Borders shown**: All 132 FBMC directional borders (66 country pairs x 2 directions)
    - **Note**: Includes both physical interconnectors and virtual trading paths
    """)
    return


@app.cell
def filter_data_for_selected_border(
    border_selector_widget,
    datetime,
    df_unified_data,
    pl,
):
    """Filter data for the selected border."""

    selected_border_name = border_selector_widget.value

    # Extract columns for selected border
    actual_col_name = f'actual_{selected_border_name}'
    forecast_col_name = f'forecast_{selected_border_name}'

    # Check if columns exist
    if actual_col_name not in df_unified_data.columns:
        df_selected_border = None
        print(f'[ERROR] Actual column {actual_col_name} not found')
    else:
        df_selected_border = df_unified_data.select([
            'timestamp',
            pl.col(actual_col_name).alias('actual'),
            pl.col(forecast_col_name).alias('forecast') if forecast_col_name in df_unified_data.columns else pl.lit(None).alias('forecast')
        ])

        # Add period marker (historical vs forecast)
        forecast_start_time = datetime(2025, 9, 2)
        df_selected_border = df_selected_border.with_columns(
            pl.when(pl.col('timestamp') >= forecast_start_time)
            .then(pl.lit('Forecast Period'))
            .otherwise(pl.lit('Historical'))
            .alias('period')
        )
    return df_selected_border, forecast_start_time, selected_border_name


@app.cell
def create_time_series_chart(
    alt,
    df_selected_border,
    forecast_start_time,
    selected_border_name,
):
    """Create Altair time series visualization."""

    if df_selected_border is None:
        chart_time_series = alt.Chart().mark_text(text='No data available', size=20)
    else:
        # Convert to pandas for Altair (CLAUDE.md Rule #37)
        df_plot = df_selected_border.to_pandas()

        # Create base chart
        base = alt.Chart(df_plot).encode(
            x=alt.X('timestamp:T', title='Date', axis=alt.Axis(format='%b %d'))
        )

        # Actual line (blue, solid)
        line_actual = base.mark_line(color='blue', strokeWidth=2).encode(
            y=alt.Y('actual:Q', title='Flow (MW)', scale=alt.Scale(zero=False)),
            tooltip=[
                alt.Tooltip('timestamp:T', title='Time', format='%Y-%m-%d %H:%M'),
                alt.Tooltip('actual:Q', title='Actual (MW)', format='.0f')
            ]
        )

        # Forecast line (orange, dashed) - only for forecast period
        df_plot_forecast = df_plot[df_plot['period'] == 'Forecast Period']

        if len(df_plot_forecast) > 0 and df_plot_forecast['forecast'].notna().any():
            line_forecast = alt.Chart(df_plot_forecast).mark_line(
                color='orange',
                strokeWidth=2,
                strokeDash=[5, 5]
            ).encode(
                x=alt.X('timestamp:T'),
                y=alt.Y('forecast:Q'),
                tooltip=[
                    alt.Tooltip('timestamp:T', title='Time', format='%Y-%m-%d %H:%M'),
                    alt.Tooltip('forecast:Q', title='Forecast (MW)', format='.0f'),
                    alt.Tooltip('actual:Q', title='Actual (MW)', format='.0f')
                ]
            )
        else:
            line_forecast = alt.Chart().mark_point()  # Empty chart

        # Vertical line at forecast start
        rule_forecast_start = alt.Chart(
            alt.Data(values=[{'x': forecast_start_time}])
        ).mark_rule(color='red', strokeDash=[3, 3], strokeWidth=1).encode(
            x='x:T'
        )

        # Combine layers
        chart_time_series = (line_actual + line_forecast + rule_forecast_start).properties(
            width=800,
            height=400,
            title=f'Border: {selected_border_name} | Hourly Flows (Aug 18 - Sept 15, 2025)'
        ).configure_axis(
            labelFontSize=12,
            titleFontSize=14
        ).configure_title(
            fontSize=16
        )
    return (chart_time_series,)


@app.cell
def calculate_summary_statistics(
    df_selected_border,
    forecast_start_time,
    pl,
    selected_border_name,
):
    """Calculate comprehensive evaluation metrics for the selected border."""

    if df_selected_border is None:
        stats_summary_text = 'No data available'
    else:
        # Filter to forecast period only
        df_forecast_period = df_selected_border.filter(
            pl.col('timestamp') >= forecast_start_time
        )

        if len(df_forecast_period) == 0 or df_forecast_period['forecast'].is_null().all():
            stats_summary_text = 'No forecast data available for this period'
        else:
            # Calculate accuracy metrics
            forecast_vals = df_forecast_period['forecast'].drop_nulls()
            actual_vals = df_forecast_period['actual'].drop_nulls()

            # Align forecast and actual (remove any nulls)
            df_eval = df_forecast_period.filter(
                pl.col('forecast').is_not_null() & pl.col('actual').is_not_null()
            )

            if len(df_eval) == 0:
                stats_summary_text = 'No overlapping forecast and actual data'
            else:
                # Error metrics
                errors = (df_eval['forecast'] - df_eval['actual'])
                abs_errors = errors.abs()

                mae_value = abs_errors.mean()
                rmse_value = (errors.pow(2).mean() ** 0.5)
                mape_value = (abs_errors / df_eval['actual'].abs()).mean() * 100

                # Bias metrics
                mean_error = errors.mean()

                # Forecast quality metrics
                unique_count = forecast_vals.n_unique()
                std_forecast = forecast_vals.std()
                std_actual = actual_vals.std()

                # Range metrics
                forecast_range = forecast_vals.max() - forecast_vals.min()
                actual_range = actual_vals.max() - actual_vals.min()

                stats_summary_text = f"""
    ### Forecast Quality Metrics

    **Border**: {selected_border_name}
    **Period**: September 2-15, 2025 (336 hours)
    **Evaluation Points**: {len(df_eval)} hours

    #### Accuracy Metrics
    - **MAE** (Mean Absolute Error): {mae_value:.0f} MW
    - **RMSE** (Root Mean Squared Error): {rmse_value:.0f} MW
    - **MAPE** (Mean Absolute Percentage Error): {mape_value:.1f}%
    - **Bias** (Mean Error): {mean_error:+.0f} MW

    #### Forecast Variation
    - **Unique Values**: {unique_count} / {len(df_eval)} ({unique_count/len(df_eval)*100:.0f}%)
    - **Forecast StdDev**: {std_forecast:.0f} MW
    - **Actual StdDev**: {std_actual:.0f} MW
    - **Forecast Range**: {forecast_range:.0f} MW
    - **Actual Range**: {actual_range:.0f} MW

    #### Interpretation
    - **MAE < 150 MW**: ✓ Excellent (zero-shot baseline target)
    - **MAE 150-300 MW**: Good
    - **MAE > 300 MW**: Needs improvement
    - **Variation**: {unique_count} unique values indicates {'VALID time-varying forecast' if unique_count > 50 else 'LOW VARIATION - may be constant'}
    - **Bias**: {'Overforecasting' if mean_error > 50 else 'Underforecasting' if mean_error < -50 else 'Balanced'}
    """
    return (stats_summary_text,)


@app.cell
def display_chart_and_stats(chart_time_series, mo, stats_summary_text):
    """Display the chart and statistics."""
    mo.vstack([
        chart_time_series,
        mo.md(stats_summary_text)
    ])
    return


if __name__ == "__main__":
    app.run()