Spaces:
Sleeping
Sleeping
File size: 13,516 Bytes
7f2c237 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import marimo
__generated_with = "0.17.2"
app = marimo.App(width="medium")
@app.cell
def imports_and_setup():
"""Import libraries and set up paths."""
import marimo as mo
import polars as pl
import altair as alt
from pathlib import Path
from datetime import datetime
import numpy as np
# Set up absolute paths
project_root = Path(__file__).parent.parent
return alt, datetime, mo, pl, project_root
@app.cell
def load_september_2025_data(datetime, pl, project_root):
"""Load September 2025 forecast results and actuals."""
# Load actuals from HuggingFace dataset (ground truth)
print('[INFO] Loading actuals from HuggingFace dataset...')
from datasets import load_dataset
import os
dataset = load_dataset('evgueni-p/fbmc-features-24month', split='train', token=os.environ.get('HF_TOKEN'))
df_actuals_full = pl.from_arrow(dataset.data.table)
print(f'[INFO] HF dataset loaded: {df_actuals_full.shape}')
# Load forecast results (full 14-day forecast with 132 borders)
forecast_path = project_root / 'results' / 'september_2025_forecast_full_14day.parquet'
if not forecast_path.exists():
raise FileNotFoundError(f'Forecast file not found: {forecast_path}. Run September 2025 forecast first.')
df_forecast_full = pl.read_parquet(forecast_path)
print(f'[INFO] Forecast loaded: {df_forecast_full.shape}')
print(f'[INFO] Forecast dates: {df_forecast_full["timestamp"].min()} to {df_forecast_full["timestamp"].max()}')
# Filter actuals to September 2025 period (Aug 18 - Sept 15 for context + forecast period)
start_date = datetime(2025, 8, 18) # 2 weeks before forecast
end_date = datetime(2025, 9, 16) # Through end of forecast period
df_actuals_filtered = df_actuals_full.filter(
(pl.col('timestamp') >= start_date) &
(pl.col('timestamp') < end_date)
)
print(f'[INFO] Actuals filtered: {df_actuals_filtered.shape[0]} hours (Aug 18 - Sept 15, 2025)')
# Forecast period for evaluation
forecast_start = datetime(2025, 9, 2)
return df_actuals_filtered, df_forecast_full
@app.cell
def prepare_unified_dataframe(
datetime,
df_actuals_filtered,
df_forecast_full,
pl,
):
"""Prepare unified dataframe with forecast and actual pairs for ALL FBMC borders."""
# Extract ALL border names from forecast columns (132 directional borders)
# Includes both physical interconnectors and virtual trading paths
forecast_cols_list = [col for col in df_forecast_full.columns if col.endswith('_median')]
border_names_list = [col.replace('_median', '') for col in forecast_cols_list]
print(f'[INFO] Processing {len(border_names_list)} FBMC borders (all directional trading paths)...')
print(f'[INFO] Sample borders: {sorted(border_names_list)[:10]}...')
# Start with timestamp from actuals
df_unified_data = df_actuals_filtered.select('timestamp')
# Add actual and forecast for each border
for border in border_names_list:
actual_col_source = f'target_border_{border}'
forecast_col_source = f'{border}_median'
# Add actuals
if actual_col_source in df_actuals_filtered.columns:
df_unified_data = df_unified_data.with_columns(
df_actuals_filtered[actual_col_source].alias(f'actual_{border}')
)
else:
print(f'[WARNING] Actual column missing: {actual_col_source}')
df_unified_data = df_unified_data.with_columns(pl.lit(None).alias(f'actual_{border}'))
# Add forecasts (join on timestamp)
if forecast_col_source in df_forecast_full.columns:
df_forecast_subset = df_forecast_full.select(['timestamp', forecast_col_source])
df_unified_data = df_unified_data.join(
df_forecast_subset,
on='timestamp',
how='left'
).rename({forecast_col_source: f'forecast_{border}'})
else:
print(f'[WARNING] Forecast column missing: {forecast_col_source}')
df_unified_data = df_unified_data.with_columns(pl.lit(None).alias(f'forecast_{border}'))
print(f'[INFO] Unified data prepared: {df_unified_data.shape}')
# Validate no data leakage - check that forecasts don't perfectly match actuals
sample_border = border_names_list[0]
forecast_col_check = f'forecast_{sample_border}'
actual_col_check = f'actual_{sample_border}'
if forecast_col_check in df_unified_data.columns and actual_col_check in df_unified_data.columns:
_forecast_start_check = datetime(2025, 9, 2)
_df_forecast_check = df_unified_data.filter(pl.col('timestamp') >= _forecast_start_check)
if len(_df_forecast_check) > 0:
mae_check = (_df_forecast_check[forecast_col_check] - _df_forecast_check[actual_col_check]).abs().mean()
if mae_check == 0:
raise ValueError(f'DATA LEAKAGE DETECTED: Forecasts perfectly match actuals (MAE=0) for {sample_border}!')
print('[INFO] Data leakage check passed - forecasts differ from actuals')
return border_names_list, df_unified_data
@app.cell
def create_border_selector(border_names_list, mo):
"""Create interactive border selection dropdown."""
border_selector_widget = mo.ui.dropdown(
options={border: border for border in sorted(border_names_list)},
value='CZ_PL', # Default to Polish border to showcase fix
label='Select Border:'
)
return (border_selector_widget,)
@app.cell
def display_border_selector(border_selector_widget, mo):
"""Display the border selector UI."""
mo.md(f"""
## Forecast Validation: September 2025 (All FBMC Borders)
**Select a border to view:**
{border_selector_widget}
Chart shows:
- **2 weeks historical** (Aug 18 - Sept 1, 2025): Actual flows only
- **2 weeks forecast** (Sept 2-15, 2025): Forecast vs Actual comparison
- **Context**: 336 hours forecast period (14 days)
- **Borders shown**: All 132 FBMC directional borders (66 country pairs x 2 directions)
- **Note**: Includes both physical interconnectors and virtual trading paths
""")
return
@app.cell
def filter_data_for_selected_border(
border_selector_widget,
datetime,
df_unified_data,
pl,
):
"""Filter data for the selected border."""
selected_border_name = border_selector_widget.value
# Extract columns for selected border
actual_col_name = f'actual_{selected_border_name}'
forecast_col_name = f'forecast_{selected_border_name}'
# Check if columns exist
if actual_col_name not in df_unified_data.columns:
df_selected_border = None
print(f'[ERROR] Actual column {actual_col_name} not found')
else:
df_selected_border = df_unified_data.select([
'timestamp',
pl.col(actual_col_name).alias('actual'),
pl.col(forecast_col_name).alias('forecast') if forecast_col_name in df_unified_data.columns else pl.lit(None).alias('forecast')
])
# Add period marker (historical vs forecast)
forecast_start_time = datetime(2025, 9, 2)
df_selected_border = df_selected_border.with_columns(
pl.when(pl.col('timestamp') >= forecast_start_time)
.then(pl.lit('Forecast Period'))
.otherwise(pl.lit('Historical'))
.alias('period')
)
return df_selected_border, forecast_start_time, selected_border_name
@app.cell
def create_time_series_chart(
alt,
df_selected_border,
forecast_start_time,
selected_border_name,
):
"""Create Altair time series visualization."""
if df_selected_border is None:
chart_time_series = alt.Chart().mark_text(text='No data available', size=20)
else:
# Convert to pandas for Altair (CLAUDE.md Rule #37)
df_plot = df_selected_border.to_pandas()
# Create base chart
base = alt.Chart(df_plot).encode(
x=alt.X('timestamp:T', title='Date', axis=alt.Axis(format='%b %d'))
)
# Actual line (blue, solid)
line_actual = base.mark_line(color='blue', strokeWidth=2).encode(
y=alt.Y('actual:Q', title='Flow (MW)', scale=alt.Scale(zero=False)),
tooltip=[
alt.Tooltip('timestamp:T', title='Time', format='%Y-%m-%d %H:%M'),
alt.Tooltip('actual:Q', title='Actual (MW)', format='.0f')
]
)
# Forecast line (orange, dashed) - only for forecast period
df_plot_forecast = df_plot[df_plot['period'] == 'Forecast Period']
if len(df_plot_forecast) > 0 and df_plot_forecast['forecast'].notna().any():
line_forecast = alt.Chart(df_plot_forecast).mark_line(
color='orange',
strokeWidth=2,
strokeDash=[5, 5]
).encode(
x=alt.X('timestamp:T'),
y=alt.Y('forecast:Q'),
tooltip=[
alt.Tooltip('timestamp:T', title='Time', format='%Y-%m-%d %H:%M'),
alt.Tooltip('forecast:Q', title='Forecast (MW)', format='.0f'),
alt.Tooltip('actual:Q', title='Actual (MW)', format='.0f')
]
)
else:
line_forecast = alt.Chart().mark_point() # Empty chart
# Vertical line at forecast start
rule_forecast_start = alt.Chart(
alt.Data(values=[{'x': forecast_start_time}])
).mark_rule(color='red', strokeDash=[3, 3], strokeWidth=1).encode(
x='x:T'
)
# Combine layers
chart_time_series = (line_actual + line_forecast + rule_forecast_start).properties(
width=800,
height=400,
title=f'Border: {selected_border_name} | Hourly Flows (Aug 18 - Sept 15, 2025)'
).configure_axis(
labelFontSize=12,
titleFontSize=14
).configure_title(
fontSize=16
)
return (chart_time_series,)
@app.cell
def calculate_summary_statistics(
df_selected_border,
forecast_start_time,
pl,
selected_border_name,
):
"""Calculate comprehensive evaluation metrics for the selected border."""
if df_selected_border is None:
stats_summary_text = 'No data available'
else:
# Filter to forecast period only
df_forecast_period = df_selected_border.filter(
pl.col('timestamp') >= forecast_start_time
)
if len(df_forecast_period) == 0 or df_forecast_period['forecast'].is_null().all():
stats_summary_text = 'No forecast data available for this period'
else:
# Calculate accuracy metrics
forecast_vals = df_forecast_period['forecast'].drop_nulls()
actual_vals = df_forecast_period['actual'].drop_nulls()
# Align forecast and actual (remove any nulls)
df_eval = df_forecast_period.filter(
pl.col('forecast').is_not_null() & pl.col('actual').is_not_null()
)
if len(df_eval) == 0:
stats_summary_text = 'No overlapping forecast and actual data'
else:
# Error metrics
errors = (df_eval['forecast'] - df_eval['actual'])
abs_errors = errors.abs()
mae_value = abs_errors.mean()
rmse_value = (errors.pow(2).mean() ** 0.5)
mape_value = (abs_errors / df_eval['actual'].abs()).mean() * 100
# Bias metrics
mean_error = errors.mean()
# Forecast quality metrics
unique_count = forecast_vals.n_unique()
std_forecast = forecast_vals.std()
std_actual = actual_vals.std()
# Range metrics
forecast_range = forecast_vals.max() - forecast_vals.min()
actual_range = actual_vals.max() - actual_vals.min()
stats_summary_text = f"""
### Forecast Quality Metrics
**Border**: {selected_border_name}
**Period**: September 2-15, 2025 (336 hours)
**Evaluation Points**: {len(df_eval)} hours
#### Accuracy Metrics
- **MAE** (Mean Absolute Error): {mae_value:.0f} MW
- **RMSE** (Root Mean Squared Error): {rmse_value:.0f} MW
- **MAPE** (Mean Absolute Percentage Error): {mape_value:.1f}%
- **Bias** (Mean Error): {mean_error:+.0f} MW
#### Forecast Variation
- **Unique Values**: {unique_count} / {len(df_eval)} ({unique_count/len(df_eval)*100:.0f}%)
- **Forecast StdDev**: {std_forecast:.0f} MW
- **Actual StdDev**: {std_actual:.0f} MW
- **Forecast Range**: {forecast_range:.0f} MW
- **Actual Range**: {actual_range:.0f} MW
#### Interpretation
- **MAE < 150 MW**: ✓ Excellent (zero-shot baseline target)
- **MAE 150-300 MW**: Good
- **MAE > 300 MW**: Needs improvement
- **Variation**: {unique_count} unique values indicates {'VALID time-varying forecast' if unique_count > 50 else 'LOW VARIATION - may be constant'}
- **Bias**: {'Overforecasting' if mean_error > 50 else 'Underforecasting' if mean_error < -50 else 'Balanced'}
"""
return (stats_summary_text,)
@app.cell
def display_chart_and_stats(chart_time_series, mo, stats_summary_text):
"""Display the chart and statistics."""
mo.vstack([
chart_time_series,
mo.md(stats_summary_text)
])
return
if __name__ == "__main__":
app.run()
|