Spaces:
Build error
Build error
Commit
·
f211596
1
Parent(s):
3cd95d0
Initial commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import spaces
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import io
|
| 10 |
+
|
| 11 |
+
model_pipeline = pipeline("object-detection", model="edm-research/detr-resnet-50-dc5-fashionpedia-finetuned")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
| 15 |
+
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def get_output_figure(pil_img, results, threshold):
|
| 19 |
+
plt.figure(figsize=(16, 10))
|
| 20 |
+
plt.imshow(pil_img)
|
| 21 |
+
ax = plt.gca()
|
| 22 |
+
colors = COLORS * 100
|
| 23 |
+
|
| 24 |
+
for result in results:
|
| 25 |
+
score = result['score']
|
| 26 |
+
label = result['label']
|
| 27 |
+
box = list(result['box'].values())
|
| 28 |
+
if score > threshold:
|
| 29 |
+
c = COLORS[hash(label) % len(COLORS)]
|
| 30 |
+
ax.add_patch(plt.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], fill=False, color=c, linewidth=3))
|
| 31 |
+
text = f'{label}: {score:0.2f}'
|
| 32 |
+
ax.text(box[0], box[1], text, fontsize=15,
|
| 33 |
+
bbox=dict(facecolor='yellow', alpha=0.5))
|
| 34 |
+
plt.axis('off')
|
| 35 |
+
|
| 36 |
+
return plt.gcf()
|
| 37 |
+
|
| 38 |
+
@spaces.GPU
|
| 39 |
+
def detect(image):
|
| 40 |
+
results = model_pipeline(image)
|
| 41 |
+
print(results)
|
| 42 |
+
|
| 43 |
+
output_figure = get_output_figure(image, results, threshold=0.7)
|
| 44 |
+
|
| 45 |
+
buf = io.BytesIO()
|
| 46 |
+
output_figure.savefig(buf, bbox_inches='tight')
|
| 47 |
+
buf.seek(0)
|
| 48 |
+
output_pil_img = Image.open(buf)
|
| 49 |
+
|
| 50 |
+
return output_pil_img
|
| 51 |
+
|
| 52 |
+
with gr.Blocks() as demo:
|
| 53 |
+
gr.Markdown("# Object detection with DETR fine tuned on detection-datasets/fashionpedia")
|
| 54 |
+
gr.Markdown(
|
| 55 |
+
"""
|
| 56 |
+
This application uses a fine tuned DETR (DEtection TRansformers) to detect objects on images.
|
| 57 |
+
This version was trained using detection-datasets/fashionpedia dataset.
|
| 58 |
+
You can load an image and see the predictions for the objects detected.
|
| 59 |
+
"""
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
gr.Interface(
|
| 63 |
+
fn=detect,
|
| 64 |
+
inputs=gr.Image(label="Input image", type="pil"),
|
| 65 |
+
outputs=[
|
| 66 |
+
gr.Image(label="Output prediction", type="pil")
|
| 67 |
+
]
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
demo.launch(show_error=True)
|