File size: 17,500 Bytes
dd380ce
 
 
 
 
 
 
e216926
dd380ce
 
965b251
dd380ce
965b251
0077aeb
 
 
965b251
dd380ce
 
0077aeb
 
965b251
dd380ce
 
 
d0e3a9a
dd380ce
 
 
0077aeb
dd380ce
 
 
 
0077aeb
dd380ce
0077aeb
dd380ce
0077aeb
dd380ce
 
 
 
 
0077aeb
dd380ce
 
 
 
 
0077aeb
 
dd380ce
0077aeb
dd380ce
965b251
dd380ce
0077aeb
 
dd380ce
 
 
0077aeb
dd380ce
965b251
dd380ce
 
 
 
 
 
d0e3a9a
dd380ce
 
 
 
0077aeb
 
dd380ce
 
 
 
 
0077aeb
dd380ce
 
 
 
 
 
 
 
 
0077aeb
dd380ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0e3a9a
 
dd380ce
 
3d5a737
 
d0e3a9a
e216926
 
d0e3a9a
e216926
 
 
d0e3a9a
e216926
 
 
 
 
 
 
 
 
d0e3a9a
e216926
 
 
d0e3a9a
3d5a737
 
d0e3a9a
dd380ce
 
04ee439
 
 
 
 
 
 
 
e216926
04ee439
 
d0e3a9a
04ee439
dd380ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0077aeb
dd380ce
 
 
0077aeb
dd380ce
 
 
 
 
 
 
0077aeb
 
 
dd380ce
 
 
 
 
 
 
 
0077aeb
dd380ce
 
 
 
 
0077aeb
dd380ce
 
 
 
 
 
 
 
 
 
0077aeb
dd380ce
 
 
 
 
d0e3a9a
dd380ce
 
965b251
dd380ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0077aeb
 
dd380ce
 
 
 
 
 
965b251
dd380ce
 
 
 
965b251
 
d0e3a9a
 
 
 
965b251
dd380ce
d0e3a9a
c960247
965b251
dd380ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import json
import uuid
import threading
import requests
import subprocess
import base64
from flask import Flask, render_template, request, jsonify, send_from_directory, abort
import queue
from groq import Groq
import itertools

# ---------- CONFIG ----------
API_KEYS = [os.environ.get(f"btz{i}") for i in range(1, 100) if os.environ.get(f"btz{i}")]
if not API_KEYS: raise KeyError("No 'btzN' environment variables found (e.g., btz1, btz2). Please set them in Hugging Face secrets.")

GROQ_API_KEY = os.environ.get("GROQ_KEY")
if not GROQ_API_KEY: raise KeyError("GROQ_KEY environment variable not found.")

GEMINI_API_KEYS = [os.environ.get(f"gmni{i}") for i in range(1, 100) if os.environ.get(f"gmni{i}")]
if not GEMINI_API_KEYS: raise KeyError("No 'gmniN' environment variables found (e.g., gmni1, gmni2). Please set them in Hugging Face secrets.")
gemini_key_cycler = itertools.cycle(GEMINI_API_KEYS)

DEFAULT_BYTEZ_MODEL = "ali-vilab/text-to-video-ms-1.7b"

# ---------- MODEL HUNTER FUNCTIONS ----------
def find_best_groq_model(api_key):
    try:
        print("🤖 Hunting for the best Groq model...")
        client = Groq(api_key=api_key); models = client.models.list().data
        available_ids = {model.id for model in models}
        preferred_keywords = ["llama-3.1", "llama3", "gemma2", "mixtral", "gemma"]
        for keyword in preferred_keywords:
            for model_id in available_ids:
                if keyword in model_id: print(f"🎯 Groq Target locked: {model_id}"); return model_id
        for model_id in available_ids:
            if all(k not in model_id for k in ["guard", "tts", "prompt"]): print(f"✅ Groq Fallback found: {model_id}"); return model_id
        raise ValueError("No usable Groq models found.")
    except Exception as e: print(f"🛑 Groq hunt failed: {e}. Using hardcoded fallback."); return "llama-3.1-8b-instant"

def find_best_gemini_vision_model(api_key):
    try:
        print("🤖 Hunting for the best Gemini Vision model...")
        url = f"https://generativelanguage.googleapis.com/v1beta/models?key={api_key}"
        response = requests.get(url, timeout=15); response.raise_for_status()
        models = response.json().get("models", [])
        vision_models = [m["name"] for m in models if any("generateContent" in s for s in m.get("supportedGenerationMethods", [])) and ("vision" in m["name"] or "flash" in m["name"] or "1.5" in m["name"])]
        preferred_models = ["gemini-1.5-flash-latest", "gemini-1.5-pro-latest", "gemini-pro-vision"]
        for preferred in preferred_models:
            for model_path in vision_models:
                if preferred in model_path: model_name = model_path.split('/')[-1]; print(f"🎯 Gemini Target locked: {model_name}"); return model_name
        if vision_models: model_name = vision_models[0].split('/')[-1]; print(f"✅ Gemini Fallback found: {model_name}"); return model_name
        raise ValueError("No usable Gemini Vision models found.")
    except Exception as e: print(f"🛑 Gemini hunt failed: {e}. Using hardcoded fallback."); return "gemini-1.5-flash-latest"

# ---------- INITIALIZATION ----------
GROQ_MODEL = find_best_groq_model(GROQ_API_KEY)
GEMINI_VISION_MODEL = find_best_gemini_vision_model(GEMINI_API_KEYS[0])
print(f"✅ Loaded {len(API_KEYS)} Bytez keys and {len(GEMINI_API_KEYS)} Gemini keys. Using Groq: {GROQ_MODEL} and Gemini: {GEMINI_VISION_MODEL}")

OUTPUT_FOLDER = "output"
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
os.makedirs("static", exist_ok=True)

# ---------- APP & STATE ----------
app = Flask(__name__)
progress = { "active": False, "step": 0, "total": 0, "status": "idle", "message": "", "error": None, "video_relpath": None, "live_log": [] }
job_queue = queue.Queue()
generated_clips_dict = {}
clips_lock = threading.Lock()

# ---------- HELPER FUNCTIONS ----------
def set_progress(log_message=None, **kwargs):
    global progress
    with threading.Lock():
        progress.update(kwargs)
        if log_message: progress["live_log"].append(f"> {log_message}");
        if len(progress["live_log"]) > 20: progress["live_log"].pop(0)

def get_progress_copy():
    with threading.Lock(): return progress.copy()

def get_prompt_from_gemini(image_data, user_text, mime_type, api_key):
    print(f"🧠 Contacting Gemini (Creative Director) using key ...{api_key[-4:]}")
    try:
        encoded_image = base64.b64encode(image_data).decode('utf-8')
        gemini_api_url = f"https://generativelanguage.googleapis.com/v1beta/models/{GEMINI_VISION_MODEL}:generateContent?key={api_key}"
        instruction_text = "You are a master AI Art Director. Your goal is to create a **vivid, rich, and visually descriptive** prompt for a text-to-video AI. Analyze the image and the user's text. Create a prompt that captures the essence, colors, and details of the scene. Focus entirely on what can be SEEN. Describe textures, lighting, and specific objects. The more visual detail, the better. Your output must be a powerful and inspiring guide for the artist."
        parts = [{"text": instruction_text}]
        if user_text: parts.append({"text": f"\nUser's instruction: '{user_text}'"})
        parts.append({"inline_data": {"mime_type": mime_type, "data": encoded_image}})
        payload = {"contents": [{"parts": parts}]}
        headers = {'Content-Type': 'application/json'}
        response = requests.post(gemini_api_url, headers=headers, json=payload, timeout=60); response.raise_for_status()
        result = response.json()
        if 'candidates' not in result or not result['candidates']:
            if 'promptFeedback' in result and 'blockReason' in result['promptFeedback']: return None, f"Gemini API Blocked: {result['promptFeedback']['blockReason']}"
            return None, "Gemini API returned an empty response."
        generated_prompt = result['candidates'][0]['content']['parts'][0]['text'].strip()
        print(f"🎬 Gemini's (Creative) prompt: {generated_prompt}")
        return generated_prompt, None
    except requests.exceptions.RequestException as e: return None, f"Gemini API Request Error: {e}"
    except Exception as e: return None, f"An unexpected error occurred with Gemini: {e}"

def generate_visual_blueprint_with_groq(user_prompt, api_key, model_name):
    print("🎨 Contacting Groq (Quality Enhancer)...")
    try:
        client = Groq(api_key=api_key)
        system_prompt = "You are a prompt engineering expert, a 'Quality Enhancer' for a text-to-video AI. Your job is to take an incoming creative prompt and make it technically perfect for the AI artist. **Your primary rule: ADD powerful keywords.** Append terms like 'photorealistic, 4k, ultra realistic, sharp focus, hyper-detailed, vibrant colors, cinematic lighting' to the prompt. Refine the description to be even more visually precise. Do NOT simplify, ENHANCE. Example Input: 'A bush of pink roses.' Example Output: 'A dense bush of vibrant pink roses, hyper-detailed petals, sharp focus, cinematic lighting, photorealistic, 4k, ultra realistic.' Output ONLY the final, enhanced description."
        response = client.chat.completions.create(model=model_name, messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}])
        visual_blueprint = response.choices[0].message.content.strip()
        print(f"✨ Groq's (Enhanced) Blueprint: {visual_blueprint}")
        return visual_blueprint, None
    except Exception as e: return None, f"Groq API Error: {e}"

# हमने यहाँ से distill_prompt_for_short_video फंक्शन को हटा दिया है।

def generate_clip(prompt, idx, api_key, bytez_model):
    from bytez import Bytez
    sdk = Bytez(api_key)
    model = sdk.model(bytez_model)
    
    out = None
    err = None
    
    try:
        result = model.run(prompt)
        print(f"DEBUG: model.run() returned a '{type(result)}'. Full result: {result}")

        if isinstance(result, tuple) and len(result) >= 2:
            out = result[0]
            err = result[1]
        elif isinstance(result, tuple) and len(result) == 1:
             out = result[0]
             err = None
        else:
            out = result
            err = None

    except Exception as e:
        print(f"🛑 CRITICAL ERROR during model.run() call: {e}")
        return None, str(e)

    if err:
        return None, f"Model Error (Key ...{api_key[-4:]}): {err}"
        
    filename = f"clip_{idx}_{uuid.uuid4().hex}.mp4"
    filepath = os.path.join(OUTPUT_FOLDER, filename)
    try:
        if isinstance(out, bytes):
            with open(filepath, "wb") as f: f.write(out)
        elif isinstance(out, str) and out.startswith('http'):
            r = requests.get(out, timeout=300)
            r.raise_for_status()
            with open(filepath, "wb") as f: f.write(r.content)
        else:
            return None, f"Unexpected or empty output from model. Output type: {type(out)}"
    except Exception as e:
        return None, f"Failed to save or download the generated clip: {e}"
        
    return filepath, None

def process_and_merge_clips(clip_files):
    if not clip_files: return None
    list_file = os.path.join(OUTPUT_FOLDER, f"clips_{uuid.uuid4().hex}.txt")
    with open(list_file, "w") as f:
        for c in clip_files: f.write(f"file '{os.path.abspath(c)}'\n")
    raw_merge_path = os.path.join(OUTPUT_FOLDER, f"final_raw_{uuid.uuid4().hex}.mp4")
    merge_cmd = ["ffmpeg", "-y", "-f", "concat", "-safe", "0", "-i", list_file, "-c", "copy", raw_merge_path]
    try: subprocess.run(merge_cmd, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    finally:
        if os.path.exists(list_file): os.remove(list_file)
    cinematic_path = os.path.join(OUTPUT_FOLDER, f"final_cinematic_{uuid.uuid4().hex}.mp4")
    vf_filters = "scale=1280:720:flags=lanczos,eq=contrast=1.1:brightness=0.05:saturation=1.15,unsharp=5:5:0.8:3:3:0.4"
    process_cmd = ["ffmpeg", "-i", raw_merge_path, "-vf", vf_filters, "-c:v", "libx264", "-preset", "veryfast", "-crf", "23", "-c:a", "copy", cinematic_path]
    try:
        print("🔧 Attempting cinematic post-processing..."); subprocess.run(process_cmd, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        print("✅ Cinematic processing successful!")
        if os.path.exists(raw_merge_path): os.remove(raw_merge_path)
        return cinematic_path
    except Exception as e: print(f"⚠️ Cinematic processing failed: {e}. Falling back to raw video."); return raw_merge_path

def worker(api_key):
    while True:
        try:
            prompt, idx, num_clips_in_job, bytez_model = job_queue.get()
            clip_path, err = generate_clip(prompt, idx, api_key, bytez_model)
            with clips_lock:
                if err: print(f"⚠️ Clip {idx + 1} failed: {err}. Skipping."); set_progress(log_message=f"⚠️ Artist #{idx + 1} failed. Skipping.")
                else: generated_clips_dict[idx] = clip_path; set_progress(log_message=f"✅ Artist #{idx + 1} finished clip.")
                successful_clips = len(generated_clips_dict); p_data = get_progress_copy()
                base_step = 1 + (1 if p_data.get('is_image_job') else 0)
                set_progress(step=base_step + successful_clips, message=f"Generated {successful_clips} of {num_clips_in_job} clips...")
        finally: job_queue.task_done()

def generate_video_job(prompt, num_clips, bytez_model):
    temp_clip_paths = []
    try:
        with clips_lock: generated_clips_dict.clear()
        total_steps = get_progress_copy().get("total", num_clips + 2); base_step = total_steps - num_clips - 1
        set_progress(active=True, step=base_step, message=f"Queueing {num_clips} clips...", log_message=f"🚀 Dispatching job to {num_clips} artists...")
        for i in range(num_clips): job_queue.put((prompt, i, num_clips, bytez_model))
        job_queue.join()
        with clips_lock:
            sorted_clips = sorted(generated_clips_dict.items())
            clip_paths = [path for _, path in sorted_clips]; temp_clip_paths.extend(clip_paths)
        successful_clips = len(clip_paths)
        print(f"✅ Generation phase complete. {successful_clips} out of {num_clips} clips succeeded.")
        set_progress(log_message=f"👍 {successful_clips} clips are ready.")
        if successful_clips == 0: raise RuntimeError("All clips failed to generate. Cannot create a video.")
        set_progress(step=total_steps - 1, message=f"Merging {successful_clips} successful clips...", log_message="🔧 Merging and post-processing...")
        final_abs_path = process_and_merge_clips(clip_paths)
        if not final_abs_path: raise RuntimeError("Failed to merge the generated clips.")
        final_rel_path = os.path.relpath(final_abs_path, start=os.getcwd())
        final_message = f"✅ Video ready! ({successful_clips}/{num_clips} clips succeeded)"
        set_progress(step=total_steps, status="done", message=final_message, video_relpath=final_rel_path, log_message="🎉 Mission Accomplished!")
    except Exception as e: set_progress(status="error", error=str(e), message="Generation failed.", log_message=f"🛑 Mission Failure: {e}")
    finally:
        set_progress(active=False)
        for clip in temp_clip_paths:
            if os.path.exists(clip): os.remove(clip)

# ---------- FLASK ROUTES ----------
@app.route("/", methods=["GET"])
def home():
    return render_template("index.html")

@app.route("/start", methods=["POST"])
def start():
    set_progress(live_log=[])
    if get_progress_copy().get("active", False): return jsonify({"error": "A video is already being generated. Please wait."}), 429
    user_prompt = request.form.get("prompt", "").strip()
    image_file = request.files.get("image")
    num_clips = max(1, min(int(request.form.get("num_clips", 3)), 20))
    style = request.form.get("style", "none")
    bytez_model = request.form.get("bytez_model", "").strip()
    if not bytez_model: bytez_model = DEFAULT_BYTEZ_MODEL
    if not user_prompt and not image_file: return jsonify({"error": "Prompt or image cannot be empty."}), 400
    initial_prompt = user_prompt
    is_image_job = bool(image_file)
    total_steps = num_clips + 2 + (1 if is_image_job else 0)
    set_progress(is_image_job=is_image_job, total=total_steps)
    if is_image_job:
        try:
            image_data = image_file.read()
            mime_type = image_file.mimetype
            set_progress(status="running", message="Initializing...", error=None, active=True, step=0, log_message="🧠 Director (Gemini) analyzing image...")
            selected_gemini_key = next(gemini_key_cycler)
            gemini_prompt, err = get_prompt_from_gemini(image_data, user_prompt, mime_type, selected_gemini_key)
            if err:
                set_progress(status="error", error=err, active=False, log_message=f"🛑 Gemini Failure: {err}"); return jsonify({"error": err}), 500
            initial_prompt = gemini_prompt
            set_progress(log_message=f"🎬 Gemini's Idea: \"{initial_prompt[:80]}...\"")
        except Exception as e:
            err_msg = f"Failed to process image: {e}"; set_progress(status="error", error=err_msg, active=False, log_message=f"🛑 Image Error: {e}"); return jsonify({"error": err_msg}), 500
    
    current_step = 1 if is_image_job else 0
    set_progress(status="running", message="Creating blueprint...", active=True, step=current_step, log_message="🎨 Quality Enhancer (Groq) creating blueprint...")
    visual_blueprint, err = generate_visual_blueprint_with_groq(initial_prompt, GROQ_API_KEY, GROQ_MODEL)
    if err:
        set_progress(status="error", error=err, active=False, log_message=f"🛑 Groq Enhancer Failure: {err}"); return jsonify({"error": err}), 500
    set_progress(log_message=f"✨ Enhanced Blueprint: \"{visual_blueprint[:80]}...\"")

    ### --- यह हिस्सा बदला गया है --- ###
    # हमने यहाँ से "Prompt Distiller" को हटा दिया है।
    # अब हम विस्तृत प्रॉम्प्ट को सीधे उपयोग करेंगे।
    
    negative_keywords = "blurry, deformed, ugly, bad anatomy, watermark, noise, grain, low quality, distortion, glitch, pixelated, artifacts"
    # अब हम `visual_blueprint` का सीधा उपयोग कर रहे हैं।
    final_prompt = f"{visual_blueprint}, {negative_keywords}"
    
    print(f"🚀 Final Prompt for Bytez (Model: {bytez_model}): {final_prompt}")
    job_thread = threading.Thread(target=generate_video_job, args=(final_prompt, num_clips, bytez_model), daemon=True)
    job_thread.start()
    return jsonify({"ok": True, "message": "Job started."})

@app.route("/progress", methods=["GET"])
def get_progress_endpoint():
    return jsonify(get_progress_copy())

@app.route(f"/{OUTPUT_FOLDER}/<path:filename>")
def serve_output_file(filename):
    if ".." in filename or filename.startswith("/"): abort(400)
    return send_from_directory(OUTPUT_FOLDER, filename)

@app.route('/manifest.json')
def serve_manifest():
    return send_from_directory('static', 'manifest.json')

@app.route('/service-worker.js')
def serve_sw():
    return send_from_directory('static', 'service-worker.js')

# ---------- RUN ----------
print(f"Starting {len(API_KEYS)} worker threads for this process...")
for api_key in API_KEYS:
    worker_thread = threading.Thread(target=worker, args=(api_key,), daemon=True)
    worker_thread.start()