Spaces:
Running
Running
| import os | |
| import re | |
| from typing import Mapping, Tuple, Dict | |
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| from PIL import Image | |
| from huggingface_hub import hf_hub_download | |
| from onnxruntime import InferenceSession | |
| # noinspection PyUnresolvedReferences | |
| def make_square(img, target_size): | |
| old_size = img.shape[:2] | |
| desired_size = max(old_size) | |
| desired_size = max(desired_size, target_size) | |
| delta_w = desired_size - old_size[1] | |
| delta_h = desired_size - old_size[0] | |
| top, bottom = delta_h // 2, delta_h - (delta_h // 2) | |
| left, right = delta_w // 2, delta_w - (delta_w // 2) | |
| color = [255, 255, 255] | |
| return cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) | |
| # noinspection PyUnresolvedReferences | |
| def smart_resize(img, size): | |
| # Assumes the image has already gone through make_square | |
| if img.shape[0] > size: | |
| img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA) | |
| elif img.shape[0] < size: | |
| img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC) | |
| else: # just do nothing | |
| pass | |
| return img | |
| class WaifuDiffusionInterrogator: | |
| def __init__( | |
| self, | |
| repo='SmilingWolf/wd-v1-4-vit-tagger', | |
| model_path='model.onnx', | |
| tags_path='selected_tags.csv', | |
| mode: str = "auto" | |
| ) -> None: | |
| self.__repo = repo | |
| self.__model_path = model_path | |
| self.__tags_path = tags_path | |
| self._provider_mode = mode | |
| self.__initialized = False | |
| self._model, self._tags = None, None | |
| def _init(self) -> None: | |
| if self.__initialized: | |
| return | |
| model_path = hf_hub_download(self.__repo, filename=self.__model_path) | |
| tags_path = hf_hub_download(self.__repo, filename=self.__tags_path) | |
| self._model = InferenceSession(str(model_path)) | |
| self._tags = pd.read_csv(tags_path) | |
| self.__initialized = True | |
| def _calculation(self, image: Image.Image) -> pd.DataFrame: | |
| self._init() | |
| # code for converting the image and running the model is taken from the link below | |
| # thanks, SmilingWolf! | |
| # https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags/blob/main/app.py | |
| # convert an image to fit the model | |
| _, height, _, _ = self._model.get_inputs()[0].shape | |
| # alpha to white | |
| image = image.convert('RGBA') | |
| new_image = Image.new('RGBA', image.size, 'WHITE') | |
| new_image.paste(image, mask=image) | |
| image = new_image.convert('RGB') | |
| image = np.asarray(image) | |
| # PIL RGB to OpenCV BGR | |
| image = image[:, :, ::-1] | |
| image = make_square(image, height) | |
| image = smart_resize(image, height) | |
| image = image.astype(np.float32) | |
| image = np.expand_dims(image, 0) | |
| # evaluate model | |
| input_name = self._model.get_inputs()[0].name | |
| label_name = self._model.get_outputs()[0].name | |
| confidence = self._model.run([label_name], {input_name: image})[0] | |
| full_tags = self._tags[['name', 'category']].copy() | |
| full_tags['confidence'] = confidence[0] | |
| return full_tags | |
| def interrogate(self, image: Image) -> Tuple[Dict[str, float], Dict[str, float]]: | |
| full_tags = self._calculation(image) | |
| # first 4 items are for rating (general, sensitive, questionable, explicit) | |
| ratings = dict(full_tags[full_tags['category'] == 9][['name', 'confidence']].values) | |
| # rest are regular tags | |
| tags = dict(full_tags[full_tags['category'] != 9][['name', 'confidence']].values) | |
| return ratings, tags | |
| WAIFU_MODELS: Mapping[str, WaifuDiffusionInterrogator] = { | |
| 'wd14-vit': WaifuDiffusionInterrogator(), | |
| 'wd14-convnext': WaifuDiffusionInterrogator( | |
| repo='SmilingWolf/wd-v1-4-convnext-tagger' | |
| ), | |
| } | |
| RE_SPECIAL = re.compile(r'([\\()])') | |
| def image_to_wd14_tags(image: Image.Image, model_name: str, threshold: float, | |
| use_spaces: bool, use_escape: bool, include_ranks: bool, score_descend: bool) \ | |
| -> Tuple[Mapping[str, float], str, Mapping[str, float]]: | |
| model = WAIFU_MODELS[model_name] | |
| ratings, tags = model.interrogate(image) | |
| filtered_tags = { | |
| tag: score for tag, score in tags.items() | |
| if score >= threshold | |
| } | |
| text_items = [] | |
| tags_pairs = filtered_tags.items() | |
| if score_descend: | |
| tags_pairs = sorted(tags_pairs, key=lambda x: (-x[1], x[0])) | |
| for tag, score in tags_pairs: | |
| tag_outformat = tag | |
| if use_spaces: | |
| tag_outformat = tag_outformat.replace('_', ' ') | |
| if use_escape: | |
| tag_outformat = re.sub(RE_SPECIAL, r'\\\1', tag_outformat) | |
| if include_ranks: | |
| tag_outformat = f"({tag_outformat}:{score:.3f})" | |
| text_items.append(tag_outformat) | |
| output_text = ', '.join(text_items) | |
| return ratings, output_text, filtered_tags | |
| if __name__ == '__main__': | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr_input_image = gr.Image(type='pil', label='Original Image') | |
| with gr.Row(): | |
| gr_model = gr.Radio(list(WAIFU_MODELS.keys()), value='wd14-vit', label='Waifu Model') | |
| gr_threshold = gr.Slider(0.0, 1.0, 0.5, label='Tagging Confidence Threshold') | |
| with gr.Row(): | |
| gr_space = gr.Checkbox(value=False, label='Use Space Instead Of _') | |
| gr_escape = gr.Checkbox(value=True, label='Use Text Escape') | |
| gr_confidence = gr.Checkbox(value=False, label='Keep Confidences') | |
| gr_order = gr.Checkbox(value=True, label='Descend By Confidence') | |
| gr_btn_submit = gr.Button(value='Tagging', variant='primary') | |
| with gr.Column(): | |
| gr_ratings = gr.Label(label='Ratings') | |
| with gr.Tabs(): | |
| with gr.Tab("Tags"): | |
| gr_tags = gr.Label(label='Tags') | |
| with gr.Tab("Exported Text"): | |
| gr_output_text = gr.TextArea(label='Exported Text') | |
| gr_btn_submit.click( | |
| image_to_wd14_tags, | |
| inputs=[gr_input_image, gr_model, gr_threshold, gr_space, gr_escape, gr_confidence, gr_order], | |
| outputs=[gr_ratings, gr_output_text, gr_tags], | |
| ) | |
| demo.queue(os.cpu_count()).launch() | |