Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch BERT model.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import os | |
| import copy | |
| import json | |
| import logging | |
| import tarfile | |
| import tempfile | |
| import shutil | |
| import torch | |
| from .file_utils import cached_path | |
| logger = logging.getLogger(__name__) | |
| class PretrainedConfig(object): | |
| pretrained_model_archive_map = {} | |
| config_name = "" | |
| weights_name = "" | |
| def get_config(cls, pretrained_model_name, cache_dir, type_vocab_size, state_dict, task_config=None): | |
| archive_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), pretrained_model_name) | |
| if os.path.exists(archive_file) is False: | |
| if pretrained_model_name in cls.pretrained_model_archive_map: | |
| archive_file = cls.pretrained_model_archive_map[pretrained_model_name] | |
| else: | |
| archive_file = pretrained_model_name | |
| # redirect to the cache, if necessary | |
| try: | |
| resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir) | |
| except FileNotFoundError: | |
| if task_config is None or task_config.local_rank == 0: | |
| logger.error( | |
| "Model name '{}' was not found in model name list. " | |
| "We assumed '{}' was a path or url but couldn't find any file " | |
| "associated to this path or url.".format( | |
| pretrained_model_name, | |
| archive_file)) | |
| return None | |
| if resolved_archive_file == archive_file: | |
| if task_config is None or task_config.local_rank == 0: | |
| logger.info("loading archive file {}".format(archive_file)) | |
| else: | |
| if task_config is None or task_config.local_rank == 0: | |
| logger.info("loading archive file {} from cache at {}".format( | |
| archive_file, resolved_archive_file)) | |
| tempdir = None | |
| if os.path.isdir(resolved_archive_file): | |
| serialization_dir = resolved_archive_file | |
| else: | |
| # Extract archive to temp dir | |
| tempdir = tempfile.mkdtemp() | |
| if task_config is None or task_config.local_rank == 0: | |
| logger.info("extracting archive file {} to temp dir {}".format( | |
| resolved_archive_file, tempdir)) | |
| with tarfile.open(resolved_archive_file, 'r:gz') as archive: | |
| archive.extractall(tempdir) | |
| serialization_dir = tempdir | |
| # Load config | |
| config_file = os.path.join(serialization_dir, cls.config_name) | |
| config = cls.from_json_file(config_file) | |
| config.type_vocab_size = type_vocab_size | |
| if task_config is None or task_config.local_rank == 0: | |
| logger.info("Model config {}".format(config)) | |
| if state_dict is None: | |
| weights_path = os.path.join(serialization_dir, cls.weights_name) | |
| if os.path.exists(weights_path): | |
| state_dict = torch.load(weights_path, map_location='cpu') | |
| else: | |
| if task_config is None or task_config.local_rank == 0: | |
| logger.info("Weight doesn't exsits. {}".format(weights_path)) | |
| if tempdir: | |
| # Clean up temp dir | |
| shutil.rmtree(tempdir) | |
| return config, state_dict | |
| def from_dict(cls, json_object): | |
| """Constructs a `BertConfig` from a Python dictionary of parameters.""" | |
| config = cls(vocab_size_or_config_json_file=-1) | |
| for key, value in json_object.items(): | |
| config.__dict__[key] = value | |
| return config | |
| def from_json_file(cls, json_file): | |
| """Constructs a `BertConfig` from a json file of parameters.""" | |
| with open(json_file, "r", encoding='utf-8') as reader: | |
| text = reader.read() | |
| return cls.from_dict(json.loads(text)) | |
| def __repr__(self): | |
| return str(self.to_json_string()) | |
| def to_dict(self): | |
| """Serializes this instance to a Python dictionary.""" | |
| output = copy.deepcopy(self.__dict__) | |
| return output | |
| def to_json_string(self): | |
| """Serializes this instance to a JSON string.""" | |
| return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" |