Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| from pathlib import Path | |
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| import trimesh | |
| import tempfile | |
| from hmr2.configs import get_config | |
| from hmr2.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD, | |
| ViTDetDataset) | |
| from hmr2.models import HMR2 | |
| from hmr2.utils import recursive_to | |
| from hmr2.utils.renderer import Renderer, cam_crop_to_full | |
| # Setup HMR2.0 model | |
| LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353) | |
| DEFAULT_CHECKPOINT='logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt' | |
| device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
| model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml') | |
| model_cfg = get_config(model_cfg) | |
| model = HMR2.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device) | |
| model.eval() | |
| # Load detector | |
| from detectron2.config import LazyConfig | |
| from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy | |
| detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py") | |
| detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl" | |
| for i in range(3): | |
| detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25 | |
| detector = DefaultPredictor_Lazy(detectron2_cfg) | |
| # Setup the renderer | |
| renderer = Renderer(model_cfg, faces=model.smpl.faces) | |
| import numpy as np | |
| def infer(in_pil_img, in_threshold=0.8): | |
| open_cv_image = np.array(in_pil_img) | |
| # Convert RGB to BGR | |
| open_cv_image = open_cv_image[:, :, ::-1].copy() | |
| print("EEEEE", open_cv_image.shape) | |
| det_out = detector(open_cv_image) | |
| det_instances = det_out['instances'] | |
| valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold) | |
| boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy() | |
| # Run HMR2.0 on all detected humans | |
| dataset = ViTDetDataset(model_cfg, open_cv_image, boxes) | |
| dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0) | |
| all_verts = [] | |
| all_cam_t = [] | |
| for batch in dataloader: | |
| batch = recursive_to(batch, device) | |
| with torch.no_grad(): | |
| out = model(batch) | |
| pred_cam = out['pred_cam'] | |
| box_center = batch["box_center"].float() | |
| box_size = batch["box_size"].float() | |
| img_size = batch["img_size"].float() | |
| render_size = img_size | |
| pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size, focal_length=img_size.mean()*2).detach().cpu().numpy() | |
| # Render the result | |
| batch_size = batch['img'].shape[0] | |
| for n in range(batch_size): | |
| # Get filename from path img_path | |
| # img_fn, _ = os.path.splitext(os.path.basename(img_path)) | |
| person_id = int(batch['personid'][n]) | |
| white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255) | |
| input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255) | |
| input_patch = input_patch.permute(1,2,0).numpy() | |
| regression_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(), | |
| out['pred_cam_t'][n].detach().cpu().numpy(), | |
| batch['img'][n], | |
| mesh_base_color=LIGHT_BLUE, | |
| scene_bg_color=(1, 1, 1), | |
| ) | |
| verts = out['pred_vertices'][n].detach().cpu().numpy() | |
| cam_t = pred_cam_t[n] | |
| all_verts.append(verts) | |
| all_cam_t.append(cam_t) | |
| # Return mesh path | |
| trimeshes = [renderer.vertices_to_trimesh(vvv, ttt.copy(), LIGHT_BLUE) for vvv,ttt in zip(all_verts, all_cam_t)] | |
| # Join meshes | |
| mesh = trimesh.util.concatenate(trimeshes) | |
| # Save mesh to file | |
| temp_name = next(tempfile._get_candidate_names()) + '.obj' | |
| trimesh.exchange.export.export_mesh(mesh, temp_name) | |
| return temp_name | |
| with gr.Blocks(title="4DHumans", css=".gradio-container") as demo: | |
| gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">HMR 2.0</div>""") | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input image", type="pil", width=300, height=300, fixed_size=True) | |
| output_model = gr.Model3D(label="Reconstructions", width=300, height=300, fixed_size=True, clear_color=[0.0, 0.0, 0.0, 0.0]) | |
| gr.HTML("""<br/>""") | |
| with gr.Row(): | |
| threshold = gr.Slider(0, 1.0, value=0.8, label='Detection Threshold') | |
| send_btn = gr.Button("Infer") | |
| send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_model]) | |
| # gr.Examples(['samples/img1.jpg', 'samples/img2.png', 'samples/img3.jpg', 'samples/img4.jpg'], inputs=input_image) | |
| gr.HTML("""</ul>""") | |
| #demo.queue() | |
| demo.launch(debug=True) | |
| ### EOF ### | |