File size: 12,061 Bytes
a3efe0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from unsloth import FastModel
import torch
import gc

# Set torch parameter to avoid error message, "FailOnRecompileLimitHit: recompile_limit reached with one_graph=True." when doing inference on images
torch._dynamo.config.cache_size_limit = 32   

# Initialize model
model, tokenizer = FastModel.from_pretrained(
    model_name = "unsloth/gemma-3n-E4B-it-unsloth-bnb-4bit",
#    model_name = "unsloth/gemma-3n-E2B-it", # This runs out of memory for the recommend/analyze chats
    dtype = None, # None for auto detection
    max_seq_length = 1024, # Choose any for long context!
    load_in_4bit = True,  # 4 bit quantization to reduce memory
    full_finetuning = False, # [NEW!] We have full finetuning now!
    # token = "hf_...", # use one if using gated models
)

# Helper function for inference
def do_gemma_3n_inference(model, messages, max_new_tokens = 128):
    inputs = tokenizer.apply_chat_template(
        messages,
        add_generation_prompt = True, # Must add for generation
        tokenize = True,
        return_dict = True,
        return_tensors = "pt",
    ).to("cuda")

    with torch.no_grad():  # Disable gradient calculation during inference
        outputs = model.generate(
            **inputs,
            max_new_tokens = max_new_tokens,
            temperature = 1.0, top_p = 0.95, top_k = 64,
            return_dict_in_generate=True,  # Crucial: Get the full output
        )

    # Decode generated tokens
    outputs_excluding_inputs = outputs.sequences[:, inputs.input_ids.shape[1]:]    # exclude input tokens
    generated_text = tokenizer.batch_decode(outputs_excluding_inputs, skip_special_tokens=True)[0]

    # Cleanup to reduce VRAM usage
    del inputs
    torch.cuda.empty_cache()
    gc.collect()

    return generated_text
    
import ast

def query_ai_text_image(text, image_path=None): 
    ''' Query AI with a prompt that includes text and an image. '''
    if image_path is None:
        return "No image uploaded."
    messages = [{
        "role" : "user",
        "content": [
            { "type": "image", "image" : image_path },
            { "type": "text",  "text" : text }
        ]
    }]
    text = do_gemma_3n_inference(model, messages, max_new_tokens = 256)
    return ast.literal_eval(text)


def query_ai_text(text): 
    ''' Query AI with a text prompt. '''
    messages = [{
        "role" : "user",
        "content": [
            { "type": "text",  "text" : text }
        ]
    }]
    text = do_gemma_3n_inference(model, messages, max_new_tokens = 256)
    return text

import pandas as pd

class Inventory:
    column_names = ['title', 'author', 'year_published', 'isbn', 'description', 'copies_on_shelf', 'total_copies']

    def __init__(self, input_file_path, output_file_path): 
        ''' Initialize library inventory with data from an input csv file. Specify the file path for storing updated inventory. '''

        # Load input file, keeping only the relevant columns
        data = pd.read_csv(input_file_path)
        data = data[ [col for col in data.columns if col in self.column_names] ]

        # Check if input contains the required fields of "title" and "description"
        for col in ['title', 'description']: 
            if col not in data.columns: 
                raise Exception(f"Input book info must contain '{col}'.")
        
        # If the number of copies is not available in the input data, set it to the default value of 1
        for col in ['copies_on_shelf', 'total_copies']: 
            if col not in data.columns: 
                print(f"Input {col} not found. Setting to default value 1.")
                data[col] = 1

        # self.data = data
        # NOTE: Due to runtime memory limitations, we only demonstrate the application on the subset of books that have short descriptions.
        self.data = data[data.description.str.count(' ') < 50]
        self.file_path = output_file_path
        self.save()

    
    def save(self): 
        ''' Save inventory data to file. '''
        self.data.to_csv(self.file_path, index=False)
    
    def get_index(self, title): 
        ''' Return a pandas Index list of book(s) that match a given title. '''
        idx = self.data[self.data.title.str.lower() == title.lower()].index
        if idx.size == 0: 
            return None
        if idx.size > 1: 
            raise Exception(f"Found {idx.size} books with the title '{title}'.") #TODO: Match on author as well.
        return idx[0]

    def check_out(self, title): 
        i = self.get_index(title)
        if i is None: 
            return "ERROR: Title not found in library collection." # TODO: Add book to collection
        if self.data.loc[i, 'copies_on_shelf'] == 0: 
            return "ERROR: Check out unsuccessful. There are 0 copies on shelf."
        self.data.loc[i, 'copies_on_shelf'] -= 1
        self.save()
        return f"Check out successful. {self.data.loc[i, 'copies_on_shelf']} of {self.data.loc[i, 'total_copies']} copies remaining."

    def check_in(self, title): 
        i = self.get_index(title)
        if i is None: 
            return "ERROR: Title not found in library collection."
        row = self.data.loc[i]
        if row.copies_on_shelf == row.total_copies: 
            return f"ERROR: Check in unsuccessful. {row.copies_on_shelf} of {row.total_copies} copies already on shelf."
        self.data.loc[i, 'copies_on_shelf'] += 1
        self.save()
        return f"Check in successful. {self.data.loc[i, 'copies_on_shelf']} of {self.data.loc[i, 'total_copies']} copies on shelf."

    def get_on_shelf_book_info(self): 
        ''' Return the title/author/description info of all books with available copies on shelf, in csv format. '''
        columns = ['title', 'author', 'description']
        return self.data[self.data.copies_on_shelf > 0][columns].to_csv()

    def get_df(self): 
        ''' Return inventory data. '''
        return self.data

    def get_dtypes(self): 
        ''' Get data types for each column. '''
        return self.data.dtypes

    def set_df(self, data): 
        ''' Set inventory as the input DataFrame. '''
        self.data = data

# Initialize mobile library Inventory object
initial_book_list = '/kaggle/input/caldecott-medal-winners-1938-2019/caldecott_winners.csv'
inventory_file_path = '/kaggle/working/inventory.csv'
inventory = Inventory(initial_book_list, inventory_file_path)

import gradio as gr
from datetime import datetime


# --- "Scan" tab ---
def scan_book(image, action):

    # Query AI to extract the title and author
    prompt = "Extract the title and author from this book cover image. Format the output as ('[title]', '[author]'). If unsuccessful, output ('Unknown Title', 'Unknown Author')."
    title, author = query_ai_text_image(prompt, image)

    # AI query success check
    if title == "Unknown Title" or author == "Unknown Author":
        return "Could not reliably extract book information from the image. Please try again with a clearer cover."

    # Get the right function (check out or check in)
    if action == 'out': 
        fn = inventory.check_out
    elif action == 'in': 
        fn = inventory.check_in
    else: 
        raise Exception(f'Unknown action {action}. Valid options are "out" or "in".')

    # Perform action and return results
    return f"Title: {title}\nAuthor: {author}\n" + fn(title)


# --- "Recommend" tab ---
recommend_examples = [
    ["Suggest five books for a toddler who loves animals."],
    ["Find 3 books for a preschooler interested in space."],
    ["What are some books about adventures?"]
]

def recommend_chat_response(message, history): 
    prompt = "You are a helpful librarian making book recommendations based on the user's description of the reader's background and interests. Respond with 3-5 books, unless otherwise specified by the user. Respond with a bullet point list formatted '[title] by [author]', followed by a short sentence of less than 20 words about why this book was chosen. You must only choose books from the following csv file: " + inventory.get_on_shelf_book_info()
    return query_ai_text(f"{prompt} \n User question: {message}")


# --- "Analyze" tab ---
analyze_examples = [
    ["What is the newest book we have?"], 
    ["Summarize the common themes in our collection."]
]

def analyze_chat_response(message, history): 
    prompt = "You are a helpful librarian answering questions about the library's collection of books, based only on this inventory data: " + inventory.get_df().to_csv(index=False)
    return query_ai_text(f"{prompt} \n User question: {message}")


# --- "Manage" tab ---
def save_inventory(df_input): 
    ''' Save the user-edited DataFrame as the inventory DataFrame. ''' # TODO: More robust error checks
    df = pd.DataFrame(df_input)

    # Explicitly convert columns to desired data types
    col_type = inventory.get_dtypes().to_list()
    for i,col in enumerate(df.columns): 
        df[col] = df[col].astype(col_type[i])

    # Save DataFrame
    inventory.set_df(df)
    inventory.save()


# --- Main gradio app ---
with gr.Blocks() as demo:
    gr.Markdown("# 🚐 MoLi: Mobile Librarian πŸ“š")
    gr.Markdown("Scan to check out/in, get book recommendations, and analyze your collection, powered by Google's Gemma 3n AI!")

    with gr.Tabs() as tabs: 

        # Scan book to check out or check in
        actions = ['out', 'in']
        with gr.Tab(label='Scan'):
            image_input = gr.Image(type='filepath', label="Upload book cover or take a photo", sources=['upload', 'webcam'], width=300)
            with gr.Row(): 
                button = {a: gr.Button(f'Check {a}') for a in actions}
            status_text = gr.Textbox(show_label=False)
            button['out'].click(fn=lambda x: scan_book(x, 'out'), inputs=image_input, outputs=status_text)
            button['in'].click(fn=lambda x: scan_book(x, 'in'), inputs=image_input, outputs=status_text)
            # # Somehow the following does not work:
            # for a, b in button.items():
            #     b.click(fn=lambda x: scan_book(x, a), inputs=image_input, outputs=status_text)

        with gr.Tab(label='Recommend'): 
            recommend_greeting = "Tell me the reader's background and interests, and I'll recommend some books available for check out!"
            gr.ChatInterface(
                fn=recommend_chat_response,
                type='messages',
                examples=recommend_examples,
                chatbot=gr.Chatbot(type='messages', placeholder=recommend_greeting),
            )
        
        with gr.Tab(label='Analyze'): 
            analyze_greeting = "Ask me anything about the library collection!"
            gr.ChatInterface(
                fn=analyze_chat_response,
                type='messages',
                examples=analyze_examples,
                chatbot=gr.Chatbot(type='messages', placeholder=analyze_greeting),
            )

        with gr.Tab(label='Manage'): 

            # Buttons
            with gr.Row(): 
                reload_button = gr.Button('Reload')
                save_button = gr.Button('Save changes')
            
            # Textbox to display status messages
            status_message = gr.Textbox(show_label=False, value='Please reload after check out or check in.')

            # Inventory table
            inventory_table = gr.DataFrame(
                value=inventory.get_df(),
                interactive=True, # Allow editing
                label="Current Library Inventory", 
                wrap=True
#                column_widths=["1fr"]*len(inventory.get_dtypes())
            )

            # Attach functions to buttons
            reload_button.click(fn=inventory.get_df, outputs=inventory_table).then(fn=lambda:f"Reloaded on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", outputs=[status_message])
            save_button.click(fn=save_inventory, inputs=inventory_table).then(fn=lambda:f"Saved on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", outputs=[status_message])


if __name__ == '__main__':
    demo.launch()