File size: 12,061 Bytes
a3efe0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
from unsloth import FastModel
import torch
import gc
# Set torch parameter to avoid error message, "FailOnRecompileLimitHit: recompile_limit reached with one_graph=True." when doing inference on images
torch._dynamo.config.cache_size_limit = 32
# Initialize model
model, tokenizer = FastModel.from_pretrained(
model_name = "unsloth/gemma-3n-E4B-it-unsloth-bnb-4bit",
# model_name = "unsloth/gemma-3n-E2B-it", # This runs out of memory for the recommend/analyze chats
dtype = None, # None for auto detection
max_seq_length = 1024, # Choose any for long context!
load_in_4bit = True, # 4 bit quantization to reduce memory
full_finetuning = False, # [NEW!] We have full finetuning now!
# token = "hf_...", # use one if using gated models
)
# Helper function for inference
def do_gemma_3n_inference(model, messages, max_new_tokens = 128):
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt = True, # Must add for generation
tokenize = True,
return_dict = True,
return_tensors = "pt",
).to("cuda")
with torch.no_grad(): # Disable gradient calculation during inference
outputs = model.generate(
**inputs,
max_new_tokens = max_new_tokens,
temperature = 1.0, top_p = 0.95, top_k = 64,
return_dict_in_generate=True, # Crucial: Get the full output
)
# Decode generated tokens
outputs_excluding_inputs = outputs.sequences[:, inputs.input_ids.shape[1]:] # exclude input tokens
generated_text = tokenizer.batch_decode(outputs_excluding_inputs, skip_special_tokens=True)[0]
# Cleanup to reduce VRAM usage
del inputs
torch.cuda.empty_cache()
gc.collect()
return generated_text
import ast
def query_ai_text_image(text, image_path=None):
''' Query AI with a prompt that includes text and an image. '''
if image_path is None:
return "No image uploaded."
messages = [{
"role" : "user",
"content": [
{ "type": "image", "image" : image_path },
{ "type": "text", "text" : text }
]
}]
text = do_gemma_3n_inference(model, messages, max_new_tokens = 256)
return ast.literal_eval(text)
def query_ai_text(text):
''' Query AI with a text prompt. '''
messages = [{
"role" : "user",
"content": [
{ "type": "text", "text" : text }
]
}]
text = do_gemma_3n_inference(model, messages, max_new_tokens = 256)
return text
import pandas as pd
class Inventory:
column_names = ['title', 'author', 'year_published', 'isbn', 'description', 'copies_on_shelf', 'total_copies']
def __init__(self, input_file_path, output_file_path):
''' Initialize library inventory with data from an input csv file. Specify the file path for storing updated inventory. '''
# Load input file, keeping only the relevant columns
data = pd.read_csv(input_file_path)
data = data[ [col for col in data.columns if col in self.column_names] ]
# Check if input contains the required fields of "title" and "description"
for col in ['title', 'description']:
if col not in data.columns:
raise Exception(f"Input book info must contain '{col}'.")
# If the number of copies is not available in the input data, set it to the default value of 1
for col in ['copies_on_shelf', 'total_copies']:
if col not in data.columns:
print(f"Input {col} not found. Setting to default value 1.")
data[col] = 1
# self.data = data
# NOTE: Due to runtime memory limitations, we only demonstrate the application on the subset of books that have short descriptions.
self.data = data[data.description.str.count(' ') < 50]
self.file_path = output_file_path
self.save()
def save(self):
''' Save inventory data to file. '''
self.data.to_csv(self.file_path, index=False)
def get_index(self, title):
''' Return a pandas Index list of book(s) that match a given title. '''
idx = self.data[self.data.title.str.lower() == title.lower()].index
if idx.size == 0:
return None
if idx.size > 1:
raise Exception(f"Found {idx.size} books with the title '{title}'.") #TODO: Match on author as well.
return idx[0]
def check_out(self, title):
i = self.get_index(title)
if i is None:
return "ERROR: Title not found in library collection." # TODO: Add book to collection
if self.data.loc[i, 'copies_on_shelf'] == 0:
return "ERROR: Check out unsuccessful. There are 0 copies on shelf."
self.data.loc[i, 'copies_on_shelf'] -= 1
self.save()
return f"Check out successful. {self.data.loc[i, 'copies_on_shelf']} of {self.data.loc[i, 'total_copies']} copies remaining."
def check_in(self, title):
i = self.get_index(title)
if i is None:
return "ERROR: Title not found in library collection."
row = self.data.loc[i]
if row.copies_on_shelf == row.total_copies:
return f"ERROR: Check in unsuccessful. {row.copies_on_shelf} of {row.total_copies} copies already on shelf."
self.data.loc[i, 'copies_on_shelf'] += 1
self.save()
return f"Check in successful. {self.data.loc[i, 'copies_on_shelf']} of {self.data.loc[i, 'total_copies']} copies on shelf."
def get_on_shelf_book_info(self):
''' Return the title/author/description info of all books with available copies on shelf, in csv format. '''
columns = ['title', 'author', 'description']
return self.data[self.data.copies_on_shelf > 0][columns].to_csv()
def get_df(self):
''' Return inventory data. '''
return self.data
def get_dtypes(self):
''' Get data types for each column. '''
return self.data.dtypes
def set_df(self, data):
''' Set inventory as the input DataFrame. '''
self.data = data
# Initialize mobile library Inventory object
initial_book_list = '/kaggle/input/caldecott-medal-winners-1938-2019/caldecott_winners.csv'
inventory_file_path = '/kaggle/working/inventory.csv'
inventory = Inventory(initial_book_list, inventory_file_path)
import gradio as gr
from datetime import datetime
# --- "Scan" tab ---
def scan_book(image, action):
# Query AI to extract the title and author
prompt = "Extract the title and author from this book cover image. Format the output as ('[title]', '[author]'). If unsuccessful, output ('Unknown Title', 'Unknown Author')."
title, author = query_ai_text_image(prompt, image)
# AI query success check
if title == "Unknown Title" or author == "Unknown Author":
return "Could not reliably extract book information from the image. Please try again with a clearer cover."
# Get the right function (check out or check in)
if action == 'out':
fn = inventory.check_out
elif action == 'in':
fn = inventory.check_in
else:
raise Exception(f'Unknown action {action}. Valid options are "out" or "in".')
# Perform action and return results
return f"Title: {title}\nAuthor: {author}\n" + fn(title)
# --- "Recommend" tab ---
recommend_examples = [
["Suggest five books for a toddler who loves animals."],
["Find 3 books for a preschooler interested in space."],
["What are some books about adventures?"]
]
def recommend_chat_response(message, history):
prompt = "You are a helpful librarian making book recommendations based on the user's description of the reader's background and interests. Respond with 3-5 books, unless otherwise specified by the user. Respond with a bullet point list formatted '[title] by [author]', followed by a short sentence of less than 20 words about why this book was chosen. You must only choose books from the following csv file: " + inventory.get_on_shelf_book_info()
return query_ai_text(f"{prompt} \n User question: {message}")
# --- "Analyze" tab ---
analyze_examples = [
["What is the newest book we have?"],
["Summarize the common themes in our collection."]
]
def analyze_chat_response(message, history):
prompt = "You are a helpful librarian answering questions about the library's collection of books, based only on this inventory data: " + inventory.get_df().to_csv(index=False)
return query_ai_text(f"{prompt} \n User question: {message}")
# --- "Manage" tab ---
def save_inventory(df_input):
''' Save the user-edited DataFrame as the inventory DataFrame. ''' # TODO: More robust error checks
df = pd.DataFrame(df_input)
# Explicitly convert columns to desired data types
col_type = inventory.get_dtypes().to_list()
for i,col in enumerate(df.columns):
df[col] = df[col].astype(col_type[i])
# Save DataFrame
inventory.set_df(df)
inventory.save()
# --- Main gradio app ---
with gr.Blocks() as demo:
gr.Markdown("# π MoLi: Mobile Librarian π")
gr.Markdown("Scan to check out/in, get book recommendations, and analyze your collection, powered by Google's Gemma 3n AI!")
with gr.Tabs() as tabs:
# Scan book to check out or check in
actions = ['out', 'in']
with gr.Tab(label='Scan'):
image_input = gr.Image(type='filepath', label="Upload book cover or take a photo", sources=['upload', 'webcam'], width=300)
with gr.Row():
button = {a: gr.Button(f'Check {a}') for a in actions}
status_text = gr.Textbox(show_label=False)
button['out'].click(fn=lambda x: scan_book(x, 'out'), inputs=image_input, outputs=status_text)
button['in'].click(fn=lambda x: scan_book(x, 'in'), inputs=image_input, outputs=status_text)
# # Somehow the following does not work:
# for a, b in button.items():
# b.click(fn=lambda x: scan_book(x, a), inputs=image_input, outputs=status_text)
with gr.Tab(label='Recommend'):
recommend_greeting = "Tell me the reader's background and interests, and I'll recommend some books available for check out!"
gr.ChatInterface(
fn=recommend_chat_response,
type='messages',
examples=recommend_examples,
chatbot=gr.Chatbot(type='messages', placeholder=recommend_greeting),
)
with gr.Tab(label='Analyze'):
analyze_greeting = "Ask me anything about the library collection!"
gr.ChatInterface(
fn=analyze_chat_response,
type='messages',
examples=analyze_examples,
chatbot=gr.Chatbot(type='messages', placeholder=analyze_greeting),
)
with gr.Tab(label='Manage'):
# Buttons
with gr.Row():
reload_button = gr.Button('Reload')
save_button = gr.Button('Save changes')
# Textbox to display status messages
status_message = gr.Textbox(show_label=False, value='Please reload after check out or check in.')
# Inventory table
inventory_table = gr.DataFrame(
value=inventory.get_df(),
interactive=True, # Allow editing
label="Current Library Inventory",
wrap=True
# column_widths=["1fr"]*len(inventory.get_dtypes())
)
# Attach functions to buttons
reload_button.click(fn=inventory.get_df, outputs=inventory_table).then(fn=lambda:f"Reloaded on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", outputs=[status_message])
save_button.click(fn=save_inventory, inputs=inventory_table).then(fn=lambda:f"Saved on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", outputs=[status_message])
if __name__ == '__main__':
demo.launch()
|