Spaces:
Runtime error
Runtime error
igashov
commited on
Commit
·
c1152c1
1
Parent(s):
bc1ef42
handle nan values if linker size is small
Browse files- app.py +43 -32
- src/egnn.py +10 -3
app.py
CHANGED
|
@@ -40,19 +40,6 @@ if not os.path.exists(diffusion_path):
|
|
| 40 |
ddpm = DDPM.load_from_checkpoint('models/geom_difflinker.ckpt', map_location=device).eval().to(device)
|
| 41 |
print('Loaded diffusion model')
|
| 42 |
|
| 43 |
-
|
| 44 |
-
def sample_fn(_data):
|
| 45 |
-
output, _ = size_nn.forward(_data, return_loss=False)
|
| 46 |
-
probabilities = torch.softmax(output, dim=1)
|
| 47 |
-
distribution = torch.distributions.Categorical(probs=probabilities)
|
| 48 |
-
samples = distribution.sample()
|
| 49 |
-
sizes = []
|
| 50 |
-
for label in samples.detach().cpu().numpy():
|
| 51 |
-
sizes.append(size_nn.linker_id2size[label])
|
| 52 |
-
sizes = torch.tensor(sizes, device=samples.device, dtype=torch.long)
|
| 53 |
-
return sizes
|
| 54 |
-
|
| 55 |
-
|
| 56 |
def read_molecule_content(path):
|
| 57 |
with open(path, "r") as f:
|
| 58 |
return "".join(f.readlines())
|
|
@@ -72,7 +59,7 @@ def read_molecule(path):
|
|
| 72 |
|
| 73 |
def show_input(input_file):
|
| 74 |
if input_file is None:
|
| 75 |
-
return ''
|
| 76 |
if isinstance(input_file, str):
|
| 77 |
path = input_file
|
| 78 |
else:
|
|
@@ -80,15 +67,24 @@ def show_input(input_file):
|
|
| 80 |
extension = path.split('.')[-1]
|
| 81 |
if extension not in ['sdf', 'pdb', 'mol', 'mol2']:
|
| 82 |
msg = output.INVALID_FORMAT_MSG.format(extension=extension)
|
| 83 |
-
return
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
try:
|
| 86 |
molecule = read_molecule_content(path)
|
| 87 |
except Exception as e:
|
| 88 |
-
return
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
html = output.INITIAL_RENDERING_TEMPLATE.format(molecule=molecule, fmt=extension)
|
| 91 |
-
return
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
def draw_sample(idx, out_files):
|
|
@@ -109,7 +105,7 @@ def draw_sample(idx, out_files):
|
|
| 109 |
return output.IFRAME_TEMPLATE.format(html=html)
|
| 110 |
|
| 111 |
|
| 112 |
-
def generate(input_file, n_steps):
|
| 113 |
if input_file is None:
|
| 114 |
return ''
|
| 115 |
|
|
@@ -156,6 +152,21 @@ def generate(input_file, n_steps):
|
|
| 156 |
ddpm.edm.T = n_steps
|
| 157 |
assert ddpm.center_of_mass == 'fragments'
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
for data in dataloader:
|
| 160 |
chain, node_mask = ddpm.sample_chain(data, sample_fn=sample_fn, keep_frames=1)
|
| 161 |
print('Generated linker')
|
|
@@ -208,6 +219,11 @@ with demo:
|
|
| 208 |
gr.Markdown('Upload the file with 3D-coordinates of the input fragments in .pdb, .mol2 or .sdf format:')
|
| 209 |
input_file = gr.File(file_count='single', label='Input Fragments')
|
| 210 |
n_steps = gr.Slider(minimum=10, maximum=500, label="Number of Denoising Steps", step=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
examples = gr.Dataset(
|
| 212 |
components=[gr.File(visible=False)],
|
| 213 |
samples=[['examples/example_1.sdf'], ['examples/example_2.sdf']],
|
|
@@ -235,21 +251,21 @@ with demo:
|
|
| 235 |
input_file.change(
|
| 236 |
fn=show_input,
|
| 237 |
inputs=[input_file],
|
| 238 |
-
outputs=[visualization],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
)
|
| 240 |
examples.click(
|
| 241 |
-
fn=lambda idx: [
|
| 242 |
-
f'examples/example_{idx+1}.sdf',
|
| 243 |
-
10,
|
| 244 |
-
show_input(f'examples/example_{idx+1}.sdf'),
|
| 245 |
-
gr.Radio(value='Sample 1', visible=False)
|
| 246 |
-
],
|
| 247 |
inputs=[examples],
|
| 248 |
-
outputs=[input_file, n_steps, visualization, samples]
|
| 249 |
)
|
| 250 |
button.click(
|
| 251 |
fn=generate,
|
| 252 |
-
inputs=[input_file, n_steps],
|
| 253 |
outputs=[visualization, output_files, samples],
|
| 254 |
)
|
| 255 |
samples.change(
|
|
@@ -257,10 +273,5 @@ with demo:
|
|
| 257 |
inputs=[samples, output_files],
|
| 258 |
outputs=[visualization],
|
| 259 |
)
|
| 260 |
-
input_file.clear(
|
| 261 |
-
fn=lambda: ['', gr.Radio(value='Sample 1', visible=False)],
|
| 262 |
-
inputs=[],
|
| 263 |
-
outputs=[visualization, samples],
|
| 264 |
-
)
|
| 265 |
|
| 266 |
demo.launch(server_name=args.ip)
|
|
|
|
| 40 |
ddpm = DDPM.load_from_checkpoint('models/geom_difflinker.ckpt', map_location=device).eval().to(device)
|
| 41 |
print('Loaded diffusion model')
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
def read_molecule_content(path):
|
| 44 |
with open(path, "r") as f:
|
| 45 |
return "".join(f.readlines())
|
|
|
|
| 59 |
|
| 60 |
def show_input(input_file):
|
| 61 |
if input_file is None:
|
| 62 |
+
return ['', gr.Radio.update(visible=False, value='Sample 1')]
|
| 63 |
if isinstance(input_file, str):
|
| 64 |
path = input_file
|
| 65 |
else:
|
|
|
|
| 67 |
extension = path.split('.')[-1]
|
| 68 |
if extension not in ['sdf', 'pdb', 'mol', 'mol2']:
|
| 69 |
msg = output.INVALID_FORMAT_MSG.format(extension=extension)
|
| 70 |
+
return [
|
| 71 |
+
output.IFRAME_TEMPLATE.format(html=msg),
|
| 72 |
+
gr.Radio.update(visible=False)
|
| 73 |
+
]
|
| 74 |
|
| 75 |
try:
|
| 76 |
molecule = read_molecule_content(path)
|
| 77 |
except Exception as e:
|
| 78 |
+
return [
|
| 79 |
+
f'Could not read the molecule: {e}',
|
| 80 |
+
gr.Radio.update(visible=False)
|
| 81 |
+
]
|
| 82 |
|
| 83 |
html = output.INITIAL_RENDERING_TEMPLATE.format(molecule=molecule, fmt=extension)
|
| 84 |
+
return [
|
| 85 |
+
output.IFRAME_TEMPLATE.format(html=html),
|
| 86 |
+
gr.Radio.update(visible=False)
|
| 87 |
+
]
|
| 88 |
|
| 89 |
|
| 90 |
def draw_sample(idx, out_files):
|
|
|
|
| 105 |
return output.IFRAME_TEMPLATE.format(html=html)
|
| 106 |
|
| 107 |
|
| 108 |
+
def generate(input_file, n_steps, n_atoms):
|
| 109 |
if input_file is None:
|
| 110 |
return ''
|
| 111 |
|
|
|
|
| 152 |
ddpm.edm.T = n_steps
|
| 153 |
assert ddpm.center_of_mass == 'fragments'
|
| 154 |
|
| 155 |
+
if n_atoms == 0:
|
| 156 |
+
def sample_fn(_data):
|
| 157 |
+
out, _ = size_nn.forward(_data, return_loss=False)
|
| 158 |
+
probabilities = torch.softmax(out, dim=1)
|
| 159 |
+
distribution = torch.distributions.Categorical(probs=probabilities)
|
| 160 |
+
samples = distribution.sample()
|
| 161 |
+
sizes = []
|
| 162 |
+
for label in samples.detach().cpu().numpy():
|
| 163 |
+
sizes.append(size_nn.linker_id2size[label])
|
| 164 |
+
sizes = torch.tensor(sizes, device=samples.device, dtype=torch.long)
|
| 165 |
+
return sizes
|
| 166 |
+
else:
|
| 167 |
+
def sample_fn(_data):
|
| 168 |
+
return torch.ones(_data['positions'].shape[0], device=device, dtype=torch.long) * n_atoms
|
| 169 |
+
|
| 170 |
for data in dataloader:
|
| 171 |
chain, node_mask = ddpm.sample_chain(data, sample_fn=sample_fn, keep_frames=1)
|
| 172 |
print('Generated linker')
|
|
|
|
| 219 |
gr.Markdown('Upload the file with 3D-coordinates of the input fragments in .pdb, .mol2 or .sdf format:')
|
| 220 |
input_file = gr.File(file_count='single', label='Input Fragments')
|
| 221 |
n_steps = gr.Slider(minimum=10, maximum=500, label="Number of Denoising Steps", step=10)
|
| 222 |
+
n_atoms = gr.Slider(
|
| 223 |
+
minimum=0, maximum=20,
|
| 224 |
+
label="Linker Size: DiffLinker will predict it if set to 0",
|
| 225 |
+
step=1
|
| 226 |
+
)
|
| 227 |
examples = gr.Dataset(
|
| 228 |
components=[gr.File(visible=False)],
|
| 229 |
samples=[['examples/example_1.sdf'], ['examples/example_2.sdf']],
|
|
|
|
| 251 |
input_file.change(
|
| 252 |
fn=show_input,
|
| 253 |
inputs=[input_file],
|
| 254 |
+
outputs=[visualization, samples],
|
| 255 |
+
)
|
| 256 |
+
input_file.clear(
|
| 257 |
+
fn=lambda: [None, '', gr.Radio.update(visible=False)],
|
| 258 |
+
inputs=[],
|
| 259 |
+
outputs=[input_file, visualization, samples],
|
| 260 |
)
|
| 261 |
examples.click(
|
| 262 |
+
fn=lambda idx: [f'examples/example_{idx+1}.sdf', 10, 0] + show_input(f'examples/example_{idx+1}.sdf'),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
inputs=[examples],
|
| 264 |
+
outputs=[input_file, n_steps, n_atoms, visualization, samples]
|
| 265 |
)
|
| 266 |
button.click(
|
| 267 |
fn=generate,
|
| 268 |
+
inputs=[input_file, n_steps, n_atoms],
|
| 269 |
outputs=[visualization, output_files, samples],
|
| 270 |
)
|
| 271 |
samples.change(
|
|
|
|
| 273 |
inputs=[samples, output_files],
|
| 274 |
outputs=[visualization],
|
| 275 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
demo.launch(server_name=args.ip)
|
src/egnn.py
CHANGED
|
@@ -421,13 +421,20 @@ class Dynamics(nn.Module):
|
|
| 421 |
if self.condition_time:
|
| 422 |
h_final = h_final[:, :-1]
|
| 423 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
vel = vel.view(bs, n_nodes, -1) # (B, N, 3)
|
| 425 |
h_final = h_final.view(bs, n_nodes, -1) # (B, N, D)
|
| 426 |
node_mask = node_mask.view(bs, n_nodes, 1) # (B, N, 1)
|
| 427 |
|
| 428 |
-
if torch.any(torch.isnan(vel)) or torch.any(torch.isnan(h_final)):
|
| 429 |
-
raise utils.FoundNaNException(vel, h_final)
|
| 430 |
-
|
| 431 |
if self.centering:
|
| 432 |
vel = utils.remove_mean_with_mask(vel, node_mask)
|
| 433 |
|
|
|
|
| 421 |
if self.condition_time:
|
| 422 |
h_final = h_final[:, :-1]
|
| 423 |
|
| 424 |
+
if torch.any(torch.isnan(vel)):
|
| 425 |
+
print('Found NaN values in velocities')
|
| 426 |
+
nan_mask = torch.isnan(vel).float()
|
| 427 |
+
vel = x * nan_mask + torch.nan_to_num(vel) * (1 - nan_mask)
|
| 428 |
+
|
| 429 |
+
if torch.any(torch.isnan(h_final)):
|
| 430 |
+
print('Found NaN values in features')
|
| 431 |
+
nan_mask = torch.isnan(h_final).float()
|
| 432 |
+
h_final = h[:, :h_final.shape[1]] * nan_mask + torch.nan_to_num(h_final) * (1 - nan_mask)
|
| 433 |
+
|
| 434 |
vel = vel.view(bs, n_nodes, -1) # (B, N, 3)
|
| 435 |
h_final = h_final.view(bs, n_nodes, -1) # (B, N, D)
|
| 436 |
node_mask = node_mask.view(bs, n_nodes, 1) # (B, N, 1)
|
| 437 |
|
|
|
|
|
|
|
|
|
|
| 438 |
if self.centering:
|
| 439 |
vel = utils.remove_mean_with_mask(vel, node_mask)
|
| 440 |
|