Spaces:
Sleeping
Sleeping
File size: 9,586 Bytes
6a2ca60 4fe3afe 6a2ca60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
#!/usr/bin/env python3
# sync_library_and_hf.py
import argparse, datetime, uuid, posixpath, sys, traceback
from pathlib import Path
from typing import List, Tuple
from urllib.parse import unquote # add at top
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, CommitOperationAdd
from huggingface_hub.utils import HfHubHTTPError
REQUIRED_DB_COLS = [
"id","filename","path","tags","keywords","notes","uploaded_at","category","dataset","hf_path"
]
INDEX_COLS = ["id","filename","relpath","category","dataset","tags","keywords","notes","uploaded_at"]
def now_iso() -> str:
return datetime.datetime.now().isoformat(timespec="seconds")
def ensure_cols(df: pd.DataFrame, cols: list) -> pd.DataFrame:
for c in cols:
if c not in df.columns:
df[c] = ""
for c in cols:
df[c] = df[c].fillna("").astype(str)
return df[cols]
def load_db(db_path: Path) -> pd.DataFrame:
if db_path.exists():
df = pd.read_csv(db_path)
else:
df = pd.DataFrame(columns=REQUIRED_DB_COLS)
return ensure_cols(df, REQUIRED_DB_COLS)
def save_db(df: pd.DataFrame, db_path: Path):
db_path.parent.mkdir(parents=True, exist_ok=True)
df.to_csv(db_path, index=False)
def load_hf_index(repo_id: str, index_filename: str) -> Tuple[pd.DataFrame, bool]:
try:
p = hf_hub_download(repo_id=repo_id, repo_type="dataset", filename=index_filename)
df = pd.read_csv(p)
return ensure_cols(df, INDEX_COLS), True
except HfHubHTTPError as e:
if e.response is not None and e.response.status_code == 404:
return ensure_cols(pd.DataFrame(columns=INDEX_COLS), INDEX_COLS), False
raise
def relpath_posix(local_path: Path, root: Path) -> str:
rel = local_path.resolve().relative_to(root.resolve())
return posixpath.join(*rel.parts)
def discover_new_local_htmls(reports_root: Path, df_db: pd.DataFrame) -> List[Path]:
all_htmls = list(reports_root.rglob("*.html"))
existing_paths = set(df_db["path"].astype(str))
return sorted([p for p in all_htmls if str(p) not in existing_paths])
def rows_from_files(files: List[Path]) -> pd.DataFrame:
ts = now_iso()
rows = [{
"id": uuid.uuid4().hex[:8],
"filename": p.name,
"path": str(p),
"tags": "",
"keywords": "",
"notes": "",
"uploaded_at": ts,
"category": "",
"dataset": "",
"hf_path": "",
} for p in files]
return pd.DataFrame(rows, columns=REQUIRED_DB_COLS) if rows else pd.DataFrame(columns=REQUIRED_DB_COLS)
def backfill_hf_paths_by_relpath(df_db: pd.DataFrame, reports_root: Path, hf_repo: str, idx: pd.DataFrame) -> int:
"""Set hf_path using exact relpath matches."""
rel_set = set(idx["relpath"].astype(str))
updated = 0
for i, p in enumerate(df_db["path"].astype(str).tolist()):
if not p:
continue
try:
rp = relpath_posix(Path(p), reports_root)
except Exception:
continue
if (not df_db.at[i, "hf_path"]) and rp in rel_set:
df_db.at[i, "hf_path"] = f"hf://{hf_repo}/{rp}"
updated += 1
return updated
def backfill_hf_paths_by_filename(df_db: pd.DataFrame, hf_repo: str, idx: pd.DataFrame) -> int:
"""Set hf_path by filename match (fallback)."""
updated = 0
rel_by_fname = dict(zip(idx["filename"].astype(str), idx["relpath"].astype(str)))
mask = df_db["hf_path"].astype(str) == ""
for i in df_db.index[mask]:
fn = str(df_db.at[i, "filename"])
rp = rel_by_fname.get(fn)
if rp:
df_db.at[i, "hf_path"] = f"hf://{hf_repo}/{rp}"
updated += 1
return updated
def append_to_remote_index(remote_index: pd.DataFrame, new_rows: List[dict]) -> pd.DataFrame:
if not new_rows:
return remote_index
add_df = pd.DataFrame(new_rows, columns=INDEX_COLS)
merged = pd.concat([remote_index, add_df], ignore_index=True)
merged = merged.drop_duplicates(subset=["relpath"], keep="first")
return merged[INDEX_COLS]
def commit_ops_in_batches(api: HfApi, repo_id: str, ops: List[CommitOperationAdd], batch_size: int, msg_prefix: str):
if not ops:
return
for start in range(0, len(ops), batch_size):
batch = ops[start:start+batch_size]
api.create_commit(
repo_id=repo_id,
repo_type="dataset",
operations=batch,
commit_message=f"{msg_prefix} (n={len(batch)})"
)
def main():
ap = argparse.ArgumentParser(description="Sync local library.csv with HF dataset: add new local files, upload missing to HF, update index.csv, backfill hf_path.")
ap.add_argument("--reports-root", required=True, type=Path, help="Root containing {model}/.../*.html")
ap.add_argument("--db-path", required=True, type=Path, help="Path to local library.csv")
ap.add_argument("--repo-id", required=True, help="HF dataset repo id, e.g. USER/audio-html")
ap.add_argument("--index-filename", default="index.csv", help="Index filename in the HF dataset (default: index.csv)")
ap.add_argument("--batch-size", type=int, default=1000, help="Files per commit when uploading to HF")
ap.add_argument("--dry-run", action="store_true", help="Print actions; do not write or push")
ap.add_argument("--commit-message", default="Sync: add new HTMLs + update index.csv", help="Commit message prefix")
args = ap.parse_args()
reports_root: Path = args.reports_root
db_path: Path = args.db_path
hf_repo: str = args.repo_id
index_filename: str = args.index_filename
bs: int = args.batch_size
dry: bool = args.dry_run
print(f"[config] reports_root={reports_root}")
print(f"[config] db_path={db_path}")
print(f"[config] repo_id={hf_repo}, index={index_filename}")
print(f"[config] batch_size={bs}, dry_run={dry}")
# 1) Load DB
df_db = load_db(db_path)
# 2) Append new local *.html files to DB
new_local_files = discover_new_local_htmls(reports_root, df_db)
print(f"[scan] new local HTML files: {len(new_local_files)}")
if new_local_files:
df_new = rows_from_files(new_local_files)
df_db = pd.concat([df_db, df_new], ignore_index=True)
# 3) Load remote index (or create a new empty one)
remote_index, existed = load_hf_index(hf_repo, index_filename)
print(f"[index] remote exists={existed}, rows={len(remote_index)}")
# 4) Backfill hf_path from remote index (relpath first, then filename)
n1 = backfill_hf_paths_by_relpath(df_db, reports_root, hf_repo, remote_index)
n2 = backfill_hf_paths_by_filename(df_db, hf_repo, remote_index)
print(f"[hf] backfilled hf_path: relpath={n1}, filename={n2}")
# 5) Determine which rows still need uploading to HF
need_upload_idx = df_db[(df_db["hf_path"] == "") & (df_db["path"] != "")]
print(f"[hf] rows needing upload: {len(need_upload_idx)}")
ops: List[CommitOperationAdd] = []
new_index_rows: List[dict] = []
for _, r in need_upload_idx.iterrows():
local = Path(r["path"])
if not local.exists():
continue # skip missing local file
try:
rp = relpath_posix(local, reports_root)
except Exception:
continue # path outside root; skip
# prepare upload op
ops.append(CommitOperationAdd(path_in_repo=rp, path_or_fileobj=str(local)))
# prepare new index row for this file
new_index_rows.append({
"id": r["id"] or uuid.uuid4().hex[:8],
"filename": r["filename"],
"relpath": rp,
"category": r["category"],
"dataset": r["dataset"],
"tags": r["tags"],
"keywords": r["keywords"],
"notes": r["notes"],
"uploaded_at": r["uploaded_at"] or now_iso(),
})
api = HfApi()
# 6) Upload missing files in batches
if ops and not dry:
print(f"[hf] uploading {len(ops)} files in batches of {bs}...")
commit_ops_in_batches(api, hf_repo, ops, bs, args.commit_message)
elif ops and dry:
print(f"[dry-run] would upload {len(ops)} files")
# 7) Merge/commit updated index.csv
if new_index_rows:
merged_index = append_to_remote_index(remote_index, new_index_rows)
if not dry:
tmp = Path("index.updated.csv")
merged_index.to_csv(tmp, index=False)
api.create_commit(
repo_id=hf_repo,
repo_type="dataset",
operations=[CommitOperationAdd(path_in_repo=index_filename, path_or_fileobj=str(tmp))],
commit_message=f"{args.commit_message} (update {index_filename}, rows={len(merged_index)})"
)
tmp.unlink(missing_ok=True)
else:
print(f"[dry-run] would update {index_filename} with +{len(new_index_rows)} rows")
# 8) Update hf_path locally for those rows we just uploaded
for _, r in need_upload_idx.iterrows():
local = Path(r["path"])
try:
rp = relpath_posix(local, reports_root)
except Exception:
continue
df_db.loc[df_db["path"] == str(local), "hf_path"] = f"hf://{hf_repo}/{rp}"
# 9) Save DB
if dry:
print("[dry-run] not writing library.csv")
else:
save_db(df_db, db_path)
print(f"[done] wrote {len(df_db)} rows to {db_path}")
if __name__ == "__main__":
try:
main()
except Exception as e:
traceback.print_exc()
sys.exit(1)
|