Spaces:
Running
Running
+ loading from hub is optional
Browse files
app.py
CHANGED
|
@@ -15,10 +15,12 @@ from msma import ScoreFlow, build_model_from_pickle, config_presets
|
|
| 15 |
|
| 16 |
@cache
|
| 17 |
def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"):
|
| 18 |
-
|
| 19 |
-
model
|
|
|
|
| 20 |
return model
|
| 21 |
|
|
|
|
| 22 |
@cache
|
| 23 |
def load_model_from_hub(preset, device):
|
| 24 |
scorenet = build_model_from_pickle(preset)
|
|
@@ -40,7 +42,7 @@ def load_model_from_hub(preset, device):
|
|
| 40 |
cache_dir="/tmp/",
|
| 41 |
)
|
| 42 |
|
| 43 |
-
model = ScoreFlow(scorenet, device=device, **model_params[
|
| 44 |
model.load_state_dict(load_file(hf_checkpoint), strict=True)
|
| 45 |
|
| 46 |
return model
|
|
@@ -91,7 +93,7 @@ def plot_heatmap(img: Image, heatmap: np.array):
|
|
| 91 |
return im
|
| 92 |
|
| 93 |
|
| 94 |
-
def run_inference(input_img, preset="edm2-img64-s-fid"):
|
| 95 |
|
| 96 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 97 |
# img = center_crop_imagenet(64, img)
|
|
@@ -101,11 +103,12 @@ def run_inference(input_img, preset="edm2-img64-s-fid"):
|
|
| 101 |
img = np.array(input_img)
|
| 102 |
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
|
| 103 |
img = img.float().to(device)
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
| 106 |
img_likelihood = model(img).cpu().numpy()
|
| 107 |
-
# img_likelihood = model.scorenet(img).square().sum(1).sum(1).contiguous().float().cpu().unsqueeze(1).numpy()
|
| 108 |
-
# print(img_likelihood.shape, img_likelihood.dtype)
|
| 109 |
img = torch.nn.functional.interpolate(img, size=64, mode="bilinear")
|
| 110 |
x = model.scorenet(img)
|
| 111 |
x = x.square().sum(dim=(2, 3, 4)) ** 0.5
|
|
@@ -124,14 +127,27 @@ demo = gr.Interface(
|
|
| 124 |
fn=run_inference,
|
| 125 |
inputs=[
|
| 126 |
gr.Image(type="pil", label="Input Image"),
|
| 127 |
-
gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
],
|
| 129 |
outputs=[
|
| 130 |
"text",
|
| 131 |
gr.Image(label="Anomaly Heatmap", min_width=64),
|
| 132 |
gr.Plot(label="Comparing to Imagenette"),
|
| 133 |
],
|
| 134 |
-
examples=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
)
|
| 136 |
|
| 137 |
if __name__ == "__main__":
|
|
|
|
| 15 |
|
| 16 |
@cache
|
| 17 |
def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"):
|
| 18 |
+
scorenet = build_model_from_pickle(preset=preset)
|
| 19 |
+
model = ScoreFlow(scorenet, num_flows=8, device=device)
|
| 20 |
+
model.flow.load_state_dict(torch.load(f"{modeldir}/comb/{preset}/flow.pt"))
|
| 21 |
return model
|
| 22 |
|
| 23 |
+
|
| 24 |
@cache
|
| 25 |
def load_model_from_hub(preset, device):
|
| 26 |
scorenet = build_model_from_pickle(preset)
|
|
|
|
| 42 |
cache_dir="/tmp/",
|
| 43 |
)
|
| 44 |
|
| 45 |
+
model = ScoreFlow(scorenet, device=device, **model_params["PatchFlow"])
|
| 46 |
model.load_state_dict(load_file(hf_checkpoint), strict=True)
|
| 47 |
|
| 48 |
return model
|
|
|
|
| 93 |
return im
|
| 94 |
|
| 95 |
|
| 96 |
+
def run_inference(input_img, preset="edm2-img64-s-fid", load_from_hub=False):
|
| 97 |
|
| 98 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 99 |
# img = center_crop_imagenet(64, img)
|
|
|
|
| 103 |
img = np.array(input_img)
|
| 104 |
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
|
| 105 |
img = img.float().to(device)
|
| 106 |
+
if load_from_hub:
|
| 107 |
+
model = load_model_from_hub(preset=preset, device=device)
|
| 108 |
+
else:
|
| 109 |
+
model = load_model(modeldir="models", preset=preset, device=device)
|
| 110 |
+
|
| 111 |
img_likelihood = model(img).cpu().numpy()
|
|
|
|
|
|
|
| 112 |
img = torch.nn.functional.interpolate(img, size=64, mode="bilinear")
|
| 113 |
x = model.scorenet(img)
|
| 114 |
x = x.square().sum(dim=(2, 3, 4)) ** 0.5
|
|
|
|
| 127 |
fn=run_inference,
|
| 128 |
inputs=[
|
| 129 |
gr.Image(type="pil", label="Input Image"),
|
| 130 |
+
gr.Dropdown(
|
| 131 |
+
choices=config_presets.keys(),
|
| 132 |
+
label="Score Model Preset",
|
| 133 |
+
info="The preset of the underlying score estimator. These are the EDM2 diffusion models from Karras et.al.",
|
| 134 |
+
),
|
| 135 |
+
gr.Checkbox(
|
| 136 |
+
label="HuggingFace Hub",
|
| 137 |
+
value=True,
|
| 138 |
+
info="Load a pretrained model from HuggingFace. Uncheck to use a model from `models` directory.",
|
| 139 |
+
),
|
| 140 |
],
|
| 141 |
outputs=[
|
| 142 |
"text",
|
| 143 |
gr.Image(label="Anomaly Heatmap", min_width=64),
|
| 144 |
gr.Plot(label="Comparing to Imagenette"),
|
| 145 |
],
|
| 146 |
+
examples=[
|
| 147 |
+
["samples/duckelephant.jpeg", "edm2-img64-s-fid", True],
|
| 148 |
+
["samples/sharkhorse.jpeg", "edm2-img64-s-fid", True],
|
| 149 |
+
["samples/goldfish.jpeg", "edm2-img64-s-fid", True],
|
| 150 |
+
],
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|