Spaces:
Running
Running
factoring out inference function
Browse files
app.py
CHANGED
|
@@ -68,7 +68,7 @@ def compute_gmm_likelihood(x_score, model_dir):
|
|
| 68 |
|
| 69 |
def plot_against_reference(nll, ref_nll):
|
| 70 |
fig, ax = plt.subplots()
|
| 71 |
-
ax.hist(ref_nll, label="Reference Scores")
|
| 72 |
ax.axvline(nll, label="Image Score", c="red", ls="--")
|
| 73 |
plt.legend()
|
| 74 |
fig.tight_layout()
|
|
@@ -93,7 +93,15 @@ def plot_heatmap(img: Image, heatmap: np.array):
|
|
| 93 |
return im
|
| 94 |
|
| 95 |
|
| 96 |
-
def run_inference(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 99 |
# img = center_crop_imagenet(64, img)
|
|
@@ -108,12 +116,9 @@ def run_inference(input_img, preset="edm2-img64-s-fid", load_from_hub=False):
|
|
| 108 |
else:
|
| 109 |
model = load_model(modeldir="models", preset=preset, device=device)
|
| 110 |
|
| 111 |
-
img_likelihood = model
|
| 112 |
-
img = torch.nn.functional.interpolate(img, size=64, mode="bilinear")
|
| 113 |
-
x = model.scorenet(img)
|
| 114 |
-
x = x.square().sum(dim=(2, 3, 4)) ** 0.5
|
| 115 |
nll, pct, ref_nll = compute_gmm_likelihood(
|
| 116 |
-
|
| 117 |
)
|
| 118 |
|
| 119 |
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile"
|
|
@@ -124,7 +129,7 @@ def run_inference(input_img, preset="edm2-img64-s-fid", load_from_hub=False):
|
|
| 124 |
|
| 125 |
|
| 126 |
demo = gr.Interface(
|
| 127 |
-
fn=
|
| 128 |
inputs=[
|
| 129 |
gr.Image(type="pil", label="Input Image"),
|
| 130 |
gr.Dropdown(
|
|
@@ -139,7 +144,7 @@ demo = gr.Interface(
|
|
| 139 |
),
|
| 140 |
],
|
| 141 |
outputs=[
|
| 142 |
-
"
|
| 143 |
gr.Image(label="Anomaly Heatmap", min_width=64),
|
| 144 |
gr.Plot(label="Comparing to Imagenette"),
|
| 145 |
],
|
|
|
|
| 68 |
|
| 69 |
def plot_against_reference(nll, ref_nll):
|
| 70 |
fig, ax = plt.subplots()
|
| 71 |
+
ax.hist(ref_nll, label="Reference Scores", bins=25)
|
| 72 |
ax.axvline(nll, label="Image Score", c="red", ls="--")
|
| 73 |
plt.legend()
|
| 74 |
fig.tight_layout()
|
|
|
|
| 93 |
return im
|
| 94 |
|
| 95 |
|
| 96 |
+
def run_inference(model, img):
|
| 97 |
+
img = torch.nn.functional.interpolate(img, size=64, mode="bilinear")
|
| 98 |
+
score_norms = model.scorenet(img)
|
| 99 |
+
score_norms = score_norms.square().sum(dim=(2, 3, 4)) ** 0.5
|
| 100 |
+
img_likelihood = model(img).cpu().numpy()
|
| 101 |
+
score_norms = score_norms.cpu().numpy()
|
| 102 |
+
return img_likelihood, score_norms
|
| 103 |
+
|
| 104 |
+
def localize_anomalies(input_img, preset="edm2-img64-s-fid", load_from_hub=False):
|
| 105 |
|
| 106 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 107 |
# img = center_crop_imagenet(64, img)
|
|
|
|
| 116 |
else:
|
| 117 |
model = load_model(modeldir="models", preset=preset, device=device)
|
| 118 |
|
| 119 |
+
img_likelihood, score_norms = run_inference(model, img)
|
|
|
|
|
|
|
|
|
|
| 120 |
nll, pct, ref_nll = compute_gmm_likelihood(
|
| 121 |
+
score_norms, model_dir=f"models/{preset}"
|
| 122 |
)
|
| 123 |
|
| 124 |
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile"
|
|
|
|
| 129 |
|
| 130 |
|
| 131 |
demo = gr.Interface(
|
| 132 |
+
fn=localize_anomalies,
|
| 133 |
inputs=[
|
| 134 |
gr.Image(type="pil", label="Input Image"),
|
| 135 |
gr.Dropdown(
|
|
|
|
| 144 |
),
|
| 145 |
],
|
| 146 |
outputs=[
|
| 147 |
+
gr.Text(label="Estimated global outlier scores - Percentiles with respect to Imagenette Scores"),
|
| 148 |
gr.Image(label="Anomaly Heatmap", min_width=64),
|
| 149 |
gr.Plot(label="Comparing to Imagenette"),
|
| 150 |
],
|