Spaces:
Running
Running
stamping tf logs with time
Browse files
msma.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import pickle
|
| 3 |
from functools import partial
|
|
@@ -194,7 +195,7 @@ def cache_score_norms(preset, dataset_path, outdir, device="cpu"):
|
|
| 194 |
f"Number of Samples: {len(dsobj)} - shape: {refimg.shape}, dtype: {refimg.dtype}, labels {reflabel}"
|
| 195 |
)
|
| 196 |
dsloader = torch.utils.data.DataLoader(
|
| 197 |
-
dsobj, batch_size=
|
| 198 |
)
|
| 199 |
|
| 200 |
model = build_model(preset=preset, device=device)
|
|
@@ -257,7 +258,8 @@ def train_flow(dataset_path, preset, outdir, epochs=10, device="cuda"):
|
|
| 257 |
|
| 258 |
experiment_dir = f"{outdir}/{preset}"
|
| 259 |
os.makedirs(experiment_dir, exist_ok=True)
|
| 260 |
-
|
|
|
|
| 261 |
|
| 262 |
# totaliters = int(epochs * train_len)
|
| 263 |
pbar = tqdm(range(epochs), desc="Train Loss: ? - Val Loss: ?")
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
import os
|
| 3 |
import pickle
|
| 4 |
from functools import partial
|
|
|
|
| 195 |
f"Number of Samples: {len(dsobj)} - shape: {refimg.shape}, dtype: {refimg.dtype}, labels {reflabel}"
|
| 196 |
)
|
| 197 |
dsloader = torch.utils.data.DataLoader(
|
| 198 |
+
dsobj, batch_size=64, num_workers=4, prefetch_factor=2
|
| 199 |
)
|
| 200 |
|
| 201 |
model = build_model(preset=preset, device=device)
|
|
|
|
| 258 |
|
| 259 |
experiment_dir = f"{outdir}/{preset}"
|
| 260 |
os.makedirs(experiment_dir, exist_ok=True)
|
| 261 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M")
|
| 262 |
+
writer = SummaryWriter(f"{experiment_dir}/logs/{timestamp}")
|
| 263 |
|
| 264 |
# totaliters = int(epochs * train_len)
|
| 265 |
pbar = tqdm(range(epochs), desc="Train Loss: ? - Val Loss: ?")
|