Spaces:
Running
Running
init commit of files
Browse files- .gitignore +1 -0
- app.py +38 -0
- scorer.py +153 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
**/__pycache__/*
|
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pickle import load
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
from scorer import build_model
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def compute_gmm_likelihood(x_score, gmmdir='models'):
|
| 11 |
+
with open(f"{gmmdir}/gmm.pkl", "rb") as f:
|
| 12 |
+
clf = load(f)
|
| 13 |
+
nll = -clf.score(x_score)
|
| 14 |
+
|
| 15 |
+
with np.load(f"{gmmdir}/refscores.npz", "wb") as f:
|
| 16 |
+
ref_nll = f["arr_0"]
|
| 17 |
+
percentile = (ref_nll < nll).mean() * 100
|
| 18 |
+
|
| 19 |
+
return nll, percentile
|
| 20 |
+
|
| 21 |
+
def run_inference(img):
|
| 22 |
+
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0)
|
| 23 |
+
img = torch.nn.functional.interpolate(img, size=64, mode='bilinear')
|
| 24 |
+
model = build_model(device='cuda')
|
| 25 |
+
x = model(img.cuda())
|
| 26 |
+
x = x.square().sum(dim=(2, 3, 4)) ** 0.5
|
| 27 |
+
nll, pct = compute_gmm_likelihood(x.cpu())
|
| 28 |
+
|
| 29 |
+
return f"Image of shape: {img.shape} -> {nll:.3f}@{pct:.2f}"
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
demo = gr.Interface(
|
| 33 |
+
fn=run_inference,
|
| 34 |
+
inputs=["image"],
|
| 35 |
+
outputs=["text"],
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
demo.launch()
|
scorer.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
+
from pickle import dump, load
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import PIL.Image
|
| 7 |
+
import torch
|
| 8 |
+
from sklearn.mixture import GaussianMixture
|
| 9 |
+
from sklearn.pipeline import Pipeline
|
| 10 |
+
from sklearn.preprocessing import StandardScaler
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
import dnnlib
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class EDMScorer(torch.nn.Module):
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
net,
|
| 20 |
+
stop_ratio=0.8, # Maximum ratio of noise levels to compute
|
| 21 |
+
num_steps=10, # Number of noise levels to evaluate.
|
| 22 |
+
use_fp16=False, # Execute the underlying model at FP16 precision?
|
| 23 |
+
sigma_min=0.002, # Minimum supported noise level.
|
| 24 |
+
sigma_max=80, # Maximum supported noise level.
|
| 25 |
+
sigma_data=0.5, # Expected standard deviation of the training data.
|
| 26 |
+
rho=7, # Time step discretization.
|
| 27 |
+
device=torch.device("cpu"), # Device to use.
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.use_fp16 = use_fp16
|
| 31 |
+
self.sigma_min = sigma_min
|
| 32 |
+
self.sigma_max = sigma_max
|
| 33 |
+
self.sigma_data = sigma_data
|
| 34 |
+
self.net = net.eval()
|
| 35 |
+
|
| 36 |
+
# Adjust noise levels based on how far we want to accumulate
|
| 37 |
+
self.sigma_min = sigma_min
|
| 38 |
+
self.sigma_max = sigma_max * stop_ratio
|
| 39 |
+
|
| 40 |
+
step_indices = torch.arange(num_steps, dtype=torch.float64, device=device)
|
| 41 |
+
t_steps = (
|
| 42 |
+
sigma_max ** (1 / rho)
|
| 43 |
+
+ step_indices
|
| 44 |
+
/ (num_steps - 1)
|
| 45 |
+
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
|
| 46 |
+
) ** rho
|
| 47 |
+
print("Using steps:", t_steps)
|
| 48 |
+
|
| 49 |
+
self.register_buffer("sigma_steps", t_steps.to(torch.float64))
|
| 50 |
+
|
| 51 |
+
@torch.inference_mode()
|
| 52 |
+
def forward(
|
| 53 |
+
self,
|
| 54 |
+
x,
|
| 55 |
+
force_fp32=False,
|
| 56 |
+
):
|
| 57 |
+
x = x.to(torch.float32)
|
| 58 |
+
|
| 59 |
+
batch_scores = []
|
| 60 |
+
for sigma in self.sigma_steps:
|
| 61 |
+
xhat = self.net(x, sigma, force_fp32=force_fp32)
|
| 62 |
+
c_skip = self.net.sigma_data**2 / (sigma**2 + self.net.sigma_data**2)
|
| 63 |
+
score = xhat - (c_skip * x)
|
| 64 |
+
|
| 65 |
+
# score_norms = score.mean(1)
|
| 66 |
+
# score_norms = score.square().sum(dim=(1, 2, 3)) ** 0.5
|
| 67 |
+
batch_scores.append(score)
|
| 68 |
+
batch_scores = torch.stack(batch_scores, axis=1)
|
| 69 |
+
|
| 70 |
+
return batch_scores
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def build_model(netpath=f"edm2-img64-s-1073741-0.075.pkl", device="cpu"):
|
| 74 |
+
model_root = "https://nvlabs-fi-cdn.nvidia.com/edm2/posthoc-reconstructions"
|
| 75 |
+
netpath = f"{model_root}/{netpath}"
|
| 76 |
+
with dnnlib.util.open_url(netpath, verbose=1) as f:
|
| 77 |
+
data = pickle.load(f)
|
| 78 |
+
net = data["ema"]
|
| 79 |
+
model = EDMScorer(net, num_steps=20).to(device)
|
| 80 |
+
return model
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def train_gmm(score_path, outdir="out/msma/"):
|
| 84 |
+
X = torch.load(score_path)
|
| 85 |
+
|
| 86 |
+
gm = GaussianMixture(n_components=5, random_state=42)
|
| 87 |
+
clf = Pipeline([("scaler", StandardScaler()), ("GMM", gm)])
|
| 88 |
+
clf.fit(X)
|
| 89 |
+
inlier_nll = -clf.score_samples(X)
|
| 90 |
+
|
| 91 |
+
with open(f"{outdir}/refscores.npz", "wb") as f:
|
| 92 |
+
np.savez_compressed(f, inlier_nll)
|
| 93 |
+
|
| 94 |
+
with open(f"{outdir}/gmm.pkl", "wb") as f:
|
| 95 |
+
dump(clf, f, protocol=5)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def compute_gmm_likelihood(x_score, gmmdir):
|
| 99 |
+
with open(f"{gmmdir}/gmm.pkl", "rb") as f:
|
| 100 |
+
clf = load(f)
|
| 101 |
+
nll = -clf.score_samples(x_score)
|
| 102 |
+
|
| 103 |
+
with np.load(f"{gmmdir}/refscores.npz", "wb") as f:
|
| 104 |
+
ref_nll = f["arr_0"]
|
| 105 |
+
percentile = (ref_nll < nll).mean()
|
| 106 |
+
|
| 107 |
+
return nll, percentile
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def test_runner(device="cpu"):
|
| 111 |
+
f = "goldfish.JPEG"
|
| 112 |
+
image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS)
|
| 113 |
+
image = np.array(image)
|
| 114 |
+
image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
|
| 115 |
+
x = torch.from_numpy(image).unsqueeze(0).to(device)
|
| 116 |
+
model = build_model(device=device)
|
| 117 |
+
scores = model(x)
|
| 118 |
+
return scores
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def runner(dataset_path, device="cpu"):
|
| 122 |
+
dsobj = ImageFolderDataset(path=dataset_path, resolution=64)
|
| 123 |
+
refimg, reflabel = dsobj[0]
|
| 124 |
+
print(refimg.shape, refimg.dtype, reflabel)
|
| 125 |
+
dsloader = torch.utils.data.DataLoader(
|
| 126 |
+
dsobj, batch_size=48, num_workers=4, prefetch_factor=2
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
model = build_model(device=device)
|
| 130 |
+
score_norms = []
|
| 131 |
+
|
| 132 |
+
for x, _ in tqdm(dsloader):
|
| 133 |
+
s = model(x.to(device))
|
| 134 |
+
s = s.square().sum(dim=(2, 3, 4)) ** 0.5
|
| 135 |
+
score_norms.append(s.cpu())
|
| 136 |
+
|
| 137 |
+
score_norms = torch.cat(score_norms, dim=0)
|
| 138 |
+
|
| 139 |
+
os.makedirs("out/msma", exist_ok=True)
|
| 140 |
+
with open("out/msma/imagenette64_score_norms.pt", "wb") as f:
|
| 141 |
+
torch.save(score_norms, f)
|
| 142 |
+
|
| 143 |
+
print(f"Computed score norms for {score_norms.shape[0]} samples")
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
if __name__ == "__main__":
|
| 147 |
+
# runner("/GROND_STOR/amahmood/datasets/img64/", device="cuda")
|
| 148 |
+
train_gmm("out/msma/imagenette64_score_norms.pt")
|
| 149 |
+
s = test_runner(device="cuda")
|
| 150 |
+
s = s.square().sum(dim=(2, 3, 4)) ** 0.5
|
| 151 |
+
s = s.to("cpu").numpy()
|
| 152 |
+
nll, pct = compute_gmm_likelihood(s, gmmdir="out/msma/")
|
| 153 |
+
print(f"Anomaly score for image: {nll[0]:.3f} @ {pct*100:.2f} percentile")
|