Create app/app.py
Browse files- app/app.py +72 -0
app/app.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from fastapi import HTTPException
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
logger = logging.getLogger(__name__)
|
| 8 |
+
|
| 9 |
+
DATASET_NAME = "agents-course/unit4-students-scores"
|
| 10 |
+
CACHE_DURATION_SECONDS = 60 # Cache data for 60 seconds
|
| 11 |
+
|
| 12 |
+
# Simple in-memory cache
|
| 13 |
+
cached_data = None
|
| 14 |
+
last_cache_time = 0
|
| 15 |
+
|
| 16 |
+
def get_sorted_leaderboard_data():
|
| 17 |
+
"""
|
| 18 |
+
Loads data from Hugging Face dataset, sorts it, and caches the result.
|
| 19 |
+
Returns the sorted data as a list of dictionaries.
|
| 20 |
+
"""
|
| 21 |
+
global cached_data, last_cache_time
|
| 22 |
+
current_time = time.time()
|
| 23 |
+
|
| 24 |
+
# Check cache validity
|
| 25 |
+
if cached_data is not None and (current_time - last_cache_time) < CACHE_DURATION_SECONDS:
|
| 26 |
+
logger.info("Returning cached leaderboard data.")
|
| 27 |
+
return cached_data
|
| 28 |
+
|
| 29 |
+
logger.info(f"Cache expired or empty. Fetching fresh data from {DATASET_NAME}...")
|
| 30 |
+
try:
|
| 31 |
+
# Load the dataset
|
| 32 |
+
dataset = load_dataset(DATASET_NAME, split="train")
|
| 33 |
+
|
| 34 |
+
# Convert to pandas DataFrame for easier sorting
|
| 35 |
+
df = pd.DataFrame(dataset)
|
| 36 |
+
|
| 37 |
+
# Ensure required columns exist
|
| 38 |
+
required_columns = ['username', 'score', 'timestamp', 'code']
|
| 39 |
+
if not all(col in df.columns for col in required_columns):
|
| 40 |
+
missing = [col for col in required_columns if col not in df.columns]
|
| 41 |
+
raise ValueError(f"Dataset missing required columns: {missing}")
|
| 42 |
+
|
| 43 |
+
# Convert timestamp to datetime objects for proper sorting
|
| 44 |
+
# Handle potential errors during conversion
|
| 45 |
+
df['timestamp_dt'] = pd.to_datetime(df['timestamp'], errors='coerce')
|
| 46 |
+
|
| 47 |
+
# Drop rows where timestamp conversion failed
|
| 48 |
+
df.dropna(subset=['timestamp_dt'], inplace=True)
|
| 49 |
+
|
| 50 |
+
# Sort by score (descending) and then by timestamp (ascending)
|
| 51 |
+
df_sorted = df.sort_values(by=['score', 'timestamp_dt'], ascending=[False, True])
|
| 52 |
+
|
| 53 |
+
# Select only the columns needed for the frontend + code
|
| 54 |
+
# Convert DataFrame to list of dictionaries (JSON serializable)
|
| 55 |
+
# Use original timestamp string for display consistency if needed,
|
| 56 |
+
# but sorting was done on datetime objects.
|
| 57 |
+
leaderboard = df_sorted[['username', 'score', 'timestamp', 'code']].to_dict(orient='records')
|
| 58 |
+
|
| 59 |
+
# Update cache
|
| 60 |
+
cached_data = leaderboard
|
| 61 |
+
last_cache_time = current_time
|
| 62 |
+
logger.info(f"Successfully fetched and cached data. {len(leaderboard)} entries.")
|
| 63 |
+
|
| 64 |
+
return cached_data
|
| 65 |
+
|
| 66 |
+
except Exception as e:
|
| 67 |
+
logger.error(f"Error loading or processing dataset {DATASET_NAME}: {e}", exc_info=True)
|
| 68 |
+
# Re-raise as HTTPException so FastAPI returns a proper error response
|
| 69 |
+
raise HTTPException(status_code=500, detail=f"Failed to load or process leaderboard data: {e}")
|
| 70 |
+
|
| 71 |
+
# Optional: Add an __init__.py file in the app directory
|
| 72 |
+
# Create an empty file named app/__init__.py
|