Added msa and go stubs
Browse files- app.py +43 -1
- requirements.txt +3 -2
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# credit: https://huggingface.co/spaces/simonduerr/3dmol.js/blob/main/app.py
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
import sys
|
| 5 |
from urllib import request
|
|
@@ -9,6 +9,9 @@ import requests
|
|
| 9 |
from transformers import AutoTokenizer, AutoModelForMaskedLM, EsmModel, AutoModel
|
| 10 |
import torch
|
| 11 |
import progres as pg
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
tokenizer_nt = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
|
|
@@ -23,6 +26,11 @@ tokenizer_se = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-ba
|
|
| 23 |
model_se = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
| 24 |
model_se.eval()
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def nt_embed(sequence: str):
|
| 28 |
tokens_ids = tokenizer_nt.batch_encode_plus([sequence], return_tensors="pt")["input_ids"]
|
|
@@ -51,6 +59,17 @@ def se_embed(sentence: str):
|
|
| 51 |
return model_output[0]
|
| 52 |
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def download_data_if_required():
|
| 55 |
url_base = f"https://zenodo.org/record/{pg.zenodo_record}/files"
|
| 56 |
fps = [pg.trained_model_fp]
|
|
@@ -181,6 +200,14 @@ def update_se(inp):
|
|
| 181 |
return str(se_embed(inp))
|
| 182 |
|
| 183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
demo = gr.Blocks()
|
| 185 |
|
| 186 |
with demo:
|
|
@@ -222,6 +249,21 @@ with demo:
|
|
| 222 |
btn = gr.Button("View embeddings")
|
| 223 |
emb = gr.Textbox(interactive=False)
|
| 224 |
btn.click(fn=update_se, inputs=[inp], outputs=emb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
if __name__ == "__main__":
|
| 227 |
download_data_if_required()
|
|
|
|
| 1 |
# credit: https://huggingface.co/spaces/simonduerr/3dmol.js/blob/main/app.py
|
| 2 |
+
from typing import Tuple
|
| 3 |
import os
|
| 4 |
import sys
|
| 5 |
from urllib import request
|
|
|
|
| 9 |
from transformers import AutoTokenizer, AutoModelForMaskedLM, EsmModel, AutoModel
|
| 10 |
import torch
|
| 11 |
import progres as pg
|
| 12 |
+
import esm
|
| 13 |
+
|
| 14 |
+
import msa
|
| 15 |
|
| 16 |
|
| 17 |
tokenizer_nt = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-500m-1000g")
|
|
|
|
| 26 |
model_se = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
| 27 |
model_se.eval()
|
| 28 |
|
| 29 |
+
msa_transformer, msa_transformer_alphabet = esm.pretrained.esm_msa1b_t12_100M_UR50S()
|
| 30 |
+
msa_transformer = msa_transformer.eval()
|
| 31 |
+
msa_transformer_batch_converter = msa_transformer_alphabet.get_batch_converter()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
|
| 35 |
def nt_embed(sequence: str):
|
| 36 |
tokens_ids = tokenizer_nt.batch_encode_plus([sequence], return_tensors="pt")["input_ids"]
|
|
|
|
| 59 |
return model_output[0]
|
| 60 |
|
| 61 |
|
| 62 |
+
def msa_embed(msa):
|
| 63 |
+
inputs = msa.greedy_select(inputs, num_seqs=128) # can change this to pass more/fewer sequences
|
| 64 |
+
msa_transformer_batch_labels, msa_transformer_batch_strs, msa_transformer_batch_tokens = msa_transformer_batch_converter([inputs])
|
| 65 |
+
msa_transformer_batch_tokens = msa_transformer_batch_tokens.to(next(msa_transformer.parameters()).device)
|
| 66 |
+
|
| 67 |
+
temp = msa_transformer(msa_transformer_batch_tokens,repr_layers=[12])['representations']
|
| 68 |
+
temp = temp[12][:,:,0,:]
|
| 69 |
+
temp = torch.mean(temp,(0,1))
|
| 70 |
+
return temp
|
| 71 |
+
|
| 72 |
+
|
| 73 |
def download_data_if_required():
|
| 74 |
url_base = f"https://zenodo.org/record/{pg.zenodo_record}/files"
|
| 75 |
fps = [pg.trained_model_fp]
|
|
|
|
| 200 |
return str(se_embed(inp))
|
| 201 |
|
| 202 |
|
| 203 |
+
def update_go(inp):
|
| 204 |
+
return str(go_embed(inp))
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def update_msa(inp):
|
| 208 |
+
return str(msa_embed(msa.read_msa(inp)))
|
| 209 |
+
|
| 210 |
+
|
| 211 |
demo = gr.Blocks()
|
| 212 |
|
| 213 |
with demo:
|
|
|
|
| 249 |
btn = gr.Button("View embeddings")
|
| 250 |
emb = gr.Textbox(interactive=False)
|
| 251 |
btn.click(fn=update_se, inputs=[inp], outputs=emb)
|
| 252 |
+
with gr.TabItem("MSA Embeddings"):
|
| 253 |
+
with gr.Box():
|
| 254 |
+
inp = gr.File(file_count="single", label="Input MSA")
|
| 255 |
+
btn = gr.Button("View embeddings")
|
| 256 |
+
emb = gr.Textbox(interactive=False)
|
| 257 |
+
btn.click(fn=update_msa, inputs=[inp], outputs=emb)
|
| 258 |
+
with gr.TabItem("GO Embeddings"):
|
| 259 |
+
with gr.Box():
|
| 260 |
+
inp = gr.Textbox(
|
| 261 |
+
placeholder="", label="Input GO Terms"
|
| 262 |
+
)
|
| 263 |
+
btn = gr.Button("View embeddings")
|
| 264 |
+
emb = gr.Textbox(interactive=False)
|
| 265 |
+
btn.click(fn=update_go, inputs=[inp], outputs=emb)
|
| 266 |
+
|
| 267 |
|
| 268 |
if __name__ == "__main__":
|
| 269 |
download_data_if_required()
|
requirements.txt
CHANGED
|
@@ -5,8 +5,9 @@ requests==2.31.0
|
|
| 5 |
torch==2.0.1
|
| 6 |
--find-links https://data.pyg.org/whl/torch-2.0.0+cpu.html torch-cluster==1.6.1
|
| 7 |
torch-geometric==2.3.1
|
| 8 |
-
|
| 9 |
--find-links https://data.pyg.org/whl/torch-2.0.0+cpu.html torch-sparse==0.6.17
|
| 10 |
--find-links https://data.pyg.org/whl/torch-2.0.0+cpu.html torch-spline-conv==1.2.2
|
| 11 |
transformers==4.29.2
|
| 12 |
-
progres
|
|
|
|
|
|
| 5 |
torch==2.0.1
|
| 6 |
--find-links https://data.pyg.org/whl/torch-2.0.0+cpu.html torch-cluster==1.6.1
|
| 7 |
torch-geometric==2.3.1
|
| 8 |
+
torch-scatter==2.1.1
|
| 9 |
--find-links https://data.pyg.org/whl/torch-2.0.0+cpu.html torch-sparse==0.6.17
|
| 10 |
--find-links https://data.pyg.org/whl/torch-2.0.0+cpu.html torch-spline-conv==1.2.2
|
| 11 |
transformers==4.29.2
|
| 12 |
+
progres
|
| 13 |
+
fair-esm
|