Spaces:
Sleeping
Sleeping
| import os | |
| import random | |
| import gradio as gr | |
| import requests | |
| from PIL import Image | |
| from utils import read_css_from_file | |
| from inference import generate_image_from_text, generate_image_from_text_with_persistent_storage | |
| # Read CSS from file | |
| css = read_css_from_file("style.css") | |
| DESCRIPTION = ''' | |
| <div id="content_align"> | |
| <span style="color:darkred;font-size:32px;font-weight:bold"> | |
| WordCraft : Visuals from Verbs | |
| </span> | |
| </div> | |
| <div id="content_align"> | |
| <span style="color:blue;font-size:18px;font-weight:bold;"> | |
| <br>A small, lighting fast efficient AI image generator | |
| </span> | |
| </div> | |
| <div id="content_align" style="margin-top: 10px;font-weight:bold;"> | |
| <br>This π» demo uses the EfficientCLIP-GAN model trained on CUB and CC12M dataset. | |
| <br>Keep your prompt coherent to domain of the selected model. | |
| <br>If you like the demo, don't forget to click on the like π button. | |
| </div> | |
| ''' | |
| available_models = [ | |
| ("EfficientCLIP-GAN trained on CUB dataset (Restricted to birds)", "CUB"), | |
| ("EfficientCLIP-GAN trained on CC12M dataset (More flexible)", "CC12M") | |
| ] | |
| # Creating Gradio interface | |
| with gr.Blocks(css=css) as app: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_prompt = gr.Textbox(label="Input Prompt", value="this tiny bird has a very small bill, a belly covered with white delicate feathers and has a set of black rounded eyes.", lines=3) | |
| model_selector = gr.Dropdown(choices=available_models, value="CUB", label="Select Model", info="Select a model with which you want to generate images") | |
| generate_button = gr.Button("Generate Images", variant='primary') | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_output1 = gr.Image(label="Generated Image 1") | |
| image_output2 = gr.Image(label="Generated Image 2") | |
| with gr.Column(): | |
| image_output3 = gr.Image(label="Generated Image 3") | |
| image_output4 = gr.Image(label="Generated Image 4") | |
| generate_button.click(generate_image_from_text_with_persistent_storage, inputs=[text_prompt, model_selector], outputs=[image_output1, image_output2, image_output3, image_output4]) | |
| # Launch the app | |
| app.launch() | |