GestureLSM / models /MeanFlow.py
Tharun156's picture
Upload 149 files
f7400bf verified
raw
history blame
13.3 kB
import logging
from functools import partial
from typing import Dict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.config import instantiate_from_config
from models.utils.utils import count_parameters
logger = logging.getLogger(__name__)
def print_memory_usage(location: str, device: torch.device = None):
"""Print current GPU memory usage."""
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type == 'cuda':
allocated = torch.cuda.memory_allocated(device) / 1024**3 # GB
reserved = torch.cuda.memory_reserved(device) / 1024**3 # GB
max_allocated = torch.cuda.max_memory_allocated(device) / 1024**3 # GB
print(f"[{location}] GPU Memory - Allocated: {allocated:.3f}GB, Reserved: {reserved:.3f}GB, Max: {max_allocated:.3f}GB")
else:
print(f"[{location}] Using CPU device")
def clear_gpu_cache():
"""Clear GPU cache to free memory."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("GPU cache cleared")
def find_attention_modules(module, attention_modules=None):
"""Recursively find all attention modules in a model."""
if attention_modules is None:
attention_modules = []
for name, child in module.named_children():
if hasattr(child, 'set_force_no_fused_attn'):
attention_modules.append(child)
find_attention_modules(child, attention_modules)
return attention_modules
def mean_flat(x):
"""
Take the mean over all non-batch dimensions.
"""
return torch.mean(x, dim=list(range(1, len(x.size()))))
def reshape_coefs(t):
"""Reshape coefficients for broadcasting."""
return t.reshape((t.shape[0], 1, 1, 1))
class GestureMF(torch.nn.Module):
"""
MeanFlow loss calculator for gesture generation, designed to be similar to GestureLSM.
"""
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
# Initialize model components
self.modality_encoder = instantiate_from_config(cfg.model.modality_encoder)
self.denoiser = instantiate_from_config(cfg.model.denoiser)
# Model hyperparameters
self.do_classifier_free_guidance = cfg.model.do_classifier_free_guidance
self.guidance_scale = cfg.model.guidance_scale
self.num_inference_steps = cfg.model.n_steps
# meanflow args
self.weighting = cfg.model.weighting
self.path_type = cfg.model.path_type
self.noise_dist = cfg.model.noise_dist
self.data_proportion = cfg.model.data_proportion
self.cfg_min_t = cfg.model.cfg_min_t
self.cfg_max_t = cfg.model.cfg_max_t
self.time_mu = cfg.model.time_mu
self.time_sigma = cfg.model.time_sigma
self.time_min = cfg.model.time_min
self.time_max = cfg.model.time_max
# CFG parameters
self.cfg_omega = cfg.model.get("cfg_omega", 0.5)
self.cfg_kappa = cfg.model.get("cfg_kappa", 0.5)
self.adaptive_p = cfg.model.get("adaptive_p", 0.5)
self.num_joints = self.denoiser.joint_num
self.seq_len = self.denoiser.seq_len
self.input_dim = self.denoiser.input_dim
self.latent_dim = self.denoiser.latent_dim
# Flow matching mode: 'v' for velocity prediction, 'x1' for direct position prediction
self.flow_mode = cfg.model.get("flow_mode", "v")
assert self.flow_mode in [
"v",
"x1",
], f"Flow mode must be 'v' or 'x1', got {self.flow_mode}"
logger.info(f"Using flow mode: {self.flow_mode}")
# Set up JVP function for computing derivatives
self.jvp_fn = torch.func.jvp
def summarize_parameters(self) -> None:
logger.info(f'Denoiser: {count_parameters(self.denoiser)}M')
logger.info(f'Encoder: {count_parameters(self.modality_encoder)}M')
def _disable_fused_attn_for_jvp(self):
"""Temporarily disable fused attention to avoid forward AD issues."""
# Find all attention modules in the denoiser
attention_modules = find_attention_modules(self.denoiser)
if attention_modules:
# Disable fused attention for all found modules
for attn_module in attention_modules:
attn_module.set_force_no_fused_attn(True)
return attention_modules, False
else:
# Fallback: check if denoiser itself has the method
if hasattr(self.denoiser, 'set_force_no_fused_attn'):
self.denoiser.set_force_no_fused_attn(True)
return self.denoiser, True
return None, None
def _restore_fused_attn(self, original_state, is_simple):
"""Restore original fused attention setting."""
if original_state is None:
return
if is_simple:
# Restore for denoiser itself
if hasattr(original_state, 'set_force_no_fused_attn'):
original_state.set_force_no_fused_attn(False)
else:
# Restore for each block
for attn in original_state:
if hasattr(attn, 'set_force_no_fused_attn'):
attn.set_force_no_fused_attn(False)
def _logit_normal_dist(self, bz, device):
rnd_normal = torch.randn((bz, 1, 1, 1), device=device)
return torch.sigmoid(rnd_normal * self.time_sigma + self.time_mu)
def _uniform_dist(self, bz, device):
return torch.rand((bz, 1, 1, 1), device=device)
def interpolate(self, t):
"""Define interpolation function"""
if self.path_type == "linear":
alpha_t = 1 - t
sigma_t = t
d_alpha_t = -1
d_sigma_t = 1
elif self.path_type == "cosine":
alpha_t = torch.cos(t * np.pi / 2)
sigma_t = torch.sin(t * np.pi / 2)
d_alpha_t = -np.pi / 2 * torch.sin(t * np.pi / 2)
d_sigma_t = np.pi / 2 * torch.cos(t * np.pi / 2)
else:
raise NotImplementedError()
return alpha_t, sigma_t, d_alpha_t, d_sigma_t
def sample_tr(self, bz, device):
"""Sample time parameters t and r."""
if self.noise_dist == "logit_normal":
t = self._logit_normal_dist(bz, device)
r = self._logit_normal_dist(bz, device)
elif self.noise_dist == "uniform":
t = self._uniform_dist(bz, device)
r = self._uniform_dist(bz, device)
else:
raise ValueError(f"Unknown noise distribution: {self.noise_dist}")
t, r = torch.maximum(t, r), torch.minimum(t, r)
data_size = int(bz * self.data_proportion)
zero_mask = (torch.arange(bz, device=t.device) < data_size).view(bz, 1, 1, 1)
r = torch.where(zero_mask, t, r)
return t, r
def apply_classifier_free_guidance(self, x, timesteps, seed, at_feat, cond_time=None, guidance_scale=1.0):
"""
Apply classifier-free guidance by running both conditional and unconditional predictions.
Args:
x: Input tensor
timesteps: Timestep tensor
seed: Seed vectors
at_feat: Audio features
cond_time: Conditional time tensor
guidance_scale: Guidance scale (1.0 means no guidance)
Returns:
Guided output tensor
"""
if guidance_scale <= 1.0:
# No guidance needed, run normal forward pass
return self.denoiser(
x=x,
timesteps=timesteps,
seed=seed,
at_feat=at_feat,
cond_time=cond_time,
)
# Double the batch for classifier free guidance
x_doubled = torch.cat([x] * 2, dim=0)
seed_doubled = torch.cat([seed] * 2, dim=0)
# Properly expand timesteps to match doubled batch size
batch_size = x.shape[0]
timesteps_doubled = timesteps.expand(batch_size * 2)
if cond_time is not None:
cond_time_doubled = cond_time.expand(batch_size * 2)
else:
cond_time_doubled = None
# Create conditional and unconditional audio features
batch_size = at_feat.shape[0]
null_cond_embed = self.denoiser.null_cond_embed.to(at_feat.dtype)
at_feat_uncond = null_cond_embed.unsqueeze(0).expand(batch_size, -1, -1)
at_feat_combined = torch.cat([at_feat, at_feat_uncond], dim=0)
# Run both conditional and unconditional predictions
output = self.denoiser(
x=x_doubled,
timesteps=timesteps_doubled,
seed=seed_doubled,
at_feat=at_feat_combined,
cond_time=cond_time_doubled,
)
# Split predictions and apply guidance
pred_cond, pred_uncond = output.chunk(2, dim=0)
guided_output = pred_uncond + guidance_scale * (pred_cond - pred_uncond)
return guided_output
def apply_conditional_dropout(self, at_feat, cond_drop_prob=0.1):
"""
Apply conditional dropout during training to simulate classifier-free guidance.
Args:
at_feat: Audio features tensor
cond_drop_prob: Probability of dropping conditions (default 0.1)
Returns:
Modified audio features with some conditions replaced by null embeddings
"""
batch_size = at_feat.shape[0]
# Create dropout mask
keep_mask = torch.rand(batch_size, device=at_feat.device) > cond_drop_prob
# Create null condition embeddings
null_cond_embed = self.denoiser.null_cond_embed.to(at_feat.dtype)
# Apply dropout: replace dropped conditions with null embeddings
at_feat_dropped = at_feat.clone()
at_feat_dropped[~keep_mask] = null_cond_embed.unsqueeze(0).expand((~keep_mask).sum(), -1, -1)
return at_feat_dropped, keep_mask
@torch.no_grad()
def forward(self, condition_dict: Dict[str, Dict]) -> Dict[str, torch.Tensor]:
"""Forward pass for inference.
Args:
condition_dict: Dictionary containing input conditions including audio, word tokens,
and other features
Returns:
Dictionary containing generated latents
"""
# Extract input features
audio = condition_dict['y']['audio_onset']
word_tokens = condition_dict['y']['word']
ids = condition_dict['y']['id']
seed_vectors = condition_dict['y']['seed']
style_features = condition_dict['y']['style_feature']
if 'wavlm' in condition_dict['y']:
wavlm_features = condition_dict['y']['wavlm']
else:
wavlm_features = None
return_dict = {}
return_dict['seed'] = seed_vectors
# Encode input modalities
audio_features = self.modality_encoder(audio, word_tokens, wavlm_features)
return_dict['at_feat'] = audio_features
# Initialize generation
batch_size = audio_features.shape[0]
latent_shape = (batch_size, self.input_dim * self.num_joints, 1, self.seq_len)
# Sampling parameters
x_t = torch.randn(latent_shape, device=audio_features.device)
return_dict['init_noise'] = x_t
if self.num_inference_steps == 1:
cond_time = torch.zeros(1, device=audio_features.device)
timestep = torch.ones(1, device=audio_features.device)
model_output = self.apply_classifier_free_guidance(
x=x_t,
timesteps=timestep,
seed=seed_vectors,
at_feat=audio_features,
cond_time=cond_time,
guidance_scale=self.guidance_scale
)
# one-step meanflow
x_t = x_t - model_output
else:
epsilon = 1e-8
timesteps = torch.linspace(1 - epsilon, 0, self.num_inference_steps + 1).to(audio_features.device)
# Generation loop
for step in range(len(timesteps) - 1):
current_t = timesteps[step].unsqueeze(0)
current_r = timesteps[step + 1].unsqueeze(0)
model_output = self.apply_classifier_free_guidance(
x=x_t,
timesteps=current_t,
cond_time=current_r,
seed=seed_vectors,
at_feat=audio_features,
guidance_scale=self.guidance_scale
)
# only support v-prediction mode for now
# Update x_t using the predicted meanflow velocity field
x_t = x_t - (current_t - current_r) * model_output
return_dict['latents'] = x_t
return return_dict