GestureLSM / models /Diffusion.py
Tharun156's picture
Upload 149 files
f7400bf verified
raw
history blame
11.2 kB
import time
import inspect
import logging
from typing import Optional
import numpy as np
from omegaconf import DictConfig
import torch
import torch.nn.functional as F
from models.config import instantiate_from_config
from models.utils.utils import count_parameters, extract_into_tensor, sum_flat
logger = logging.getLogger(__name__)
class GestureDiffusion(torch.nn.Module):
def __init__(self, cfg) -> None:
super().__init__()
self.cfg = cfg
self.modality_encoder = instantiate_from_config(cfg.model.modality_encoder)
self.denoiser = instantiate_from_config(cfg.model.denoiser)
self.scheduler = instantiate_from_config(cfg.model.scheduler)
self.alphas = torch.sqrt(self.scheduler.alphas_cumprod)
self.sigmas = torch.sqrt(1 - self.scheduler.alphas_cumprod)
self.do_classifier_free_guidance = cfg.model.do_classifier_free_guidance
self.guidance_scale = cfg.model.guidance_scale
self.smooth_l1_loss = torch.nn.SmoothL1Loss(reduction='none')
self.seq_len = self.denoiser.seq_len
self.input_dim = self.denoiser.input_dim
self.num_joints = self.denoiser.joint_num
def summarize_parameters(self) -> None:
logger.info(f'Denoiser: {count_parameters(self.denoiser)}M')
logger.info(f'Scheduler: {count_parameters(self.modality_encoder)}M')
def apply_classifier_free_guidance(self, x, timesteps, seed, at_feat, guidance_scale=1.0):
"""
Apply classifier-free guidance by running both conditional and unconditional predictions.
Args:
x: Input tensor
timesteps: Timestep tensor
seed: Seed vectors
at_feat: Audio features
guidance_scale: Guidance scale (1.0 means no guidance)
Returns:
Guided output tensor
"""
if guidance_scale <= 1.0:
# No guidance needed, run normal forward pass
return self.denoiser(
x=x,
timesteps=timesteps,
seed=seed,
at_feat=at_feat,
cond_drop_prob=0.0,
null_cond=False
)
# Double the batch for classifier free guidance
x_doubled = torch.cat([x] * 2, dim=0)
seed_doubled = torch.cat([seed] * 2, dim=0)
at_feat_doubled = torch.cat([at_feat] * 2, dim=0)
# Properly expand timesteps to match doubled batch size
batch_size = x.shape[0]
timesteps_doubled = timesteps.expand(batch_size * 2)
# Create conditional and unconditional audio features
batch_size = at_feat.shape[0]
null_cond_embed = self.denoiser.null_cond_embed.to(at_feat.dtype)
at_feat_uncond = null_cond_embed.unsqueeze(0).expand(batch_size, -1, -1)
at_feat_combined = torch.cat([at_feat, at_feat_uncond], dim=0)
# Run both conditional and unconditional predictions
output = self.denoiser(
x=x_doubled,
timesteps=timesteps_doubled,
seed=seed_doubled,
at_feat=at_feat_combined,
)
# Split predictions and apply guidance
pred_cond, pred_uncond = output.chunk(2, dim=0)
guided_output = pred_uncond + guidance_scale * (pred_cond - pred_uncond)
return guided_output
def apply_conditional_dropout(self, at_feat, cond_drop_prob=0.1):
"""
Apply conditional dropout during training to simulate classifier-free guidance.
Args:
at_feat: Audio features tensor
cond_drop_prob: Probability of dropping conditions (default 0.1)
Returns:
Modified audio features with some conditions replaced by null embeddings
"""
batch_size = at_feat.shape[0]
# Create dropout mask
keep_mask = torch.rand(batch_size, device=at_feat.device) > cond_drop_prob
# Create null condition embeddings
null_cond_embed = self.denoiser.null_cond_embed.to(at_feat.dtype)
# Apply dropout: replace dropped conditions with null embeddings
at_feat_dropped = at_feat.clone()
at_feat_dropped[~keep_mask] = null_cond_embed.unsqueeze(0).expand((~keep_mask).sum(), -1, -1)
return at_feat_dropped
def predicted_origin(self, model_output: torch.Tensor, timesteps: torch.Tensor, sample: torch.Tensor) -> tuple:
self.alphas = self.alphas.to(model_output.device)
self.sigmas = self.sigmas.to(model_output.device)
alphas = extract_into_tensor(self.alphas, timesteps, sample.shape)
sigmas = extract_into_tensor(self.sigmas, timesteps, sample.shape)
# i will do this
if self.scheduler.config.prediction_type == "epsilon":
pred_original_sample = (sample - sigmas * model_output) / alphas
pred_epsilon = model_output
elif self.scheduler.config.prediction_type == "sample":
pred_original_sample = model_output
pred_epsilon = (sample - alphas * model_output) / sigmas
elif self.scheduler.config.prediction_type == "v_prediction":
pred_original_sample = alphas * sample - sigmas * model_output
pred_epsilon = alphas * model_output + sigmas * sample
else:
raise ValueError(f"Invalid prediction_type {self.scheduler.config.prediction_type}.")
return pred_original_sample, pred_epsilon
def forward(self, cond_: dict) -> dict:
audio = cond_['y']['audio_onset']
word = cond_['y']['word']
id = cond_['y']['id']
seed = cond_['y']['seed']
style_feature = cond_['y']['style_feature']
audio_feat = self.modality_encoder(audio, word)
bs = audio_feat.shape[0]
shape_ = (bs, self.input_dim * self.num_joints, 1, self.seq_len)
latents = torch.randn(shape_, device=audio_feat.device)
latents = self._diffusion_reverse(latents, seed, audio_feat, guidance_scale=self.guidance_scale)
return latents
def _diffusion_reverse(
self,
latents: torch.Tensor,
seed: torch.Tensor,
at_feat: torch.Tensor,
guidance_scale: float = 1,
) -> torch.Tensor:
return_dict = {}
# scale the initial noise by the standard deviation required by the scheduler, like in Stable Diffusion
# this is the initial noise need to be returned for rectified training
latents = latents * self.scheduler.init_noise_sigma
noise = latents
return_dict["init_noise"] = latents
return_dict['at_feat'] = at_feat
return_dict['seed'] = seed
# set timesteps
self.scheduler.set_timesteps(self.cfg.model.scheduler.num_inference_steps)
timesteps = self.scheduler.timesteps.to(at_feat.device)
latents = torch.zeros_like(latents)
latents = self.scheduler.add_noise(latents, noise, timesteps[0])
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (Ξ·) is only used with the DDIMScheduler, and between [0, 1]
extra_step_kwargs = {}
if "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()):
extra_step_kwargs["eta"] = self.cfg.model.scheduler.eta
for i, t in enumerate(timesteps):
latent_model_input = latents
# actually it does nothing here according to ddim scheduler
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
model_output = self.apply_classifier_free_guidance(
x=latent_model_input,
timesteps=t,
seed=seed,
at_feat=at_feat,
guidance_scale=guidance_scale)
latents = self.scheduler.step(model_output, t, latents, **extra_step_kwargs).prev_sample
return_dict['latents'] = latents
return return_dict
def _diffusion_process(self,
latents: torch.Tensor,
audio_feat: torch.Tensor,
id: torch.Tensor,
seed: torch.Tensor,
style_feature: torch.Tensor
) -> dict:
# [batch_size, n_frame, latent_dim]
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(
0,
self.scheduler.config.num_train_timesteps,
(bsz,),
device=latents.device
)
timesteps = timesteps.long()
noisy_latents = self.scheduler.add_noise(latents.clone(), noise, timesteps)
model_output = self.denoiser(
x=noisy_latents,
timesteps=timesteps,
seed=seed,
at_feat=audio_feat,
)
latents_pred, noise_pred = self.predicted_origin(model_output, timesteps, noisy_latents)
n_set = {
"noise": noise,
"noise_pred": noise_pred,
"sample_pred": latents_pred,
"sample_gt": latents,
"timesteps": timesteps,
"model_output": model_output,
}
return n_set
def train_forward(self, cond_: dict, x0: torch.Tensor) -> dict:
audio = cond_['y']['audio_onset']
word = cond_['y']['word']
id = cond_['y']['id']
seed = cond_['y']['seed']
style_feature = cond_['y']['style_feature']
audio_feat = self.modality_encoder(audio, word)
# Apply conditional dropout during training
audio_feat = self.apply_conditional_dropout(audio_feat, cond_drop_prob=0.1)
n_set = self._diffusion_process(x0, audio_feat, id, seed, style_feature)
loss_dict = dict()
# Diffusion loss
if self.scheduler.config.prediction_type == "epsilon":
model_pred, target = n_set['noise_pred'], n_set['noise']
elif self.scheduler.config.prediction_type == "sample":
model_pred, target = n_set['sample_pred'], n_set['sample_gt']
elif self.scheduler.config.prediction_type == "v_prediction":
# For v_prediction, we need to compute the v target
# v = alpha * noise - sigma * x0
timesteps = n_set['timesteps']
self.alphas = self.alphas.to(x0.device)
self.sigmas = self.sigmas.to(x0.device)
alphas = extract_into_tensor(self.alphas, timesteps, x0.shape)
sigmas = extract_into_tensor(self.sigmas, timesteps, x0.shape)
v_target = alphas * n_set['noise'] - sigmas * n_set['sample_gt']
model_pred, target = n_set['model_output'], v_target # The model output is the v prediction
else:
raise ValueError(f"Invalid prediction_type {self.scheduler.config.prediction_type}.")
# mse loss
diff_loss = F.mse_loss(target, model_pred, reduction="mean")
loss_dict['diff_loss'] = diff_loss
total_loss = sum(loss_dict.values())
loss_dict['loss'] = total_loss
return loss_dict