Spaces:
Runtime error
Runtime error
File size: 5,310 Bytes
f7400bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import pdb
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from .layers.utils import *
from .layers.transformer import SpatialTemporalBlock, CrossAttentionBlock
class GestureDenoiser(nn.Module):
def __init__(self,
input_dim=128,
latent_dim=256,
ff_size=1024,
num_layers=8,
num_heads=4,
dropout=0.1,
activation="gelu",
n_seed=8,
flip_sin_to_cos= True,
freq_shift = 0,
cond_proj_dim=None,
use_exp=False,
seq_len=32,
embed_context_multiplier=4,
):
super().__init__()
self.input_dim = input_dim
self.latent_dim = latent_dim
self.ff_size = ff_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.activation = activation
self.use_exp = use_exp
self.joint_num = 3 if not self.use_exp else 4
self.sequence_pos_encoder = PositionalEncoding(self.latent_dim, self.dropout)
self.cross_attn_blocks = nn.ModuleList([
CrossAttentionBlock(dim=self.latent_dim*self.joint_num,num_heads=self.num_heads,mlp_ratio=self.ff_size//self.latent_dim,drop_path=self.dropout) #hidden是对应于输入x的维度,attn_heads应该是12,这里写1是为了方便调试流程
for _ in range(3)])
self.mytimmblocks = nn.ModuleList([
SpatialTemporalBlock(dim=self.latent_dim,num_heads=self.num_heads,mlp_ratio=self.ff_size//self.latent_dim,drop_path=self.dropout) #hidden是对应于输入x的维度,attn_heads应该是12,这里写1是为了方便调试流程
for _ in range(self.num_layers)])
self.embed_timestep = TimestepEmbedder(self.latent_dim, self.sequence_pos_encoder)
self.n_seed = n_seed
self.seq_len = seq_len
self.embed_context_multiplier = embed_context_multiplier
self.embed_text = nn.Linear(self.input_dim * self.joint_num * self.embed_context_multiplier, self.latent_dim)
self.output_process = OutputProcess(self.input_dim, self.latent_dim)
self.rel_pos = SinusoidalEmbeddings(self.latent_dim)
self.input_process = InputProcess(self.input_dim , self.latent_dim)
self.input_process2 = nn.Linear(self.latent_dim*2, self.latent_dim)
self.time_embedding = TimestepEmbedding(self.latent_dim, self.latent_dim, self.activation, cond_proj_dim=cond_proj_dim, zero_init_cond=True)
time_dim = self.latent_dim
self.time_proj = Timesteps(time_dim, flip_sin_to_cos, freq_shift)
if cond_proj_dim is not None:
self.cond_proj = Timesteps(time_dim, flip_sin_to_cos, freq_shift)
# Null condition embedding for classifier-free guidance
self.null_cond_embed = nn.Parameter(torch.zeros(self.seq_len, self.latent_dim*self.joint_num), requires_grad=True)
# dropout mask
def prob_mask_like(self, shape, prob, device):
return torch.zeros(shape, device=device).float().uniform_(0, 1) < prob
def forward(self, x, timesteps, cond_time=None, seed=None, at_feat=None):
"""
x: [batch_size, njoints, nfeats, max_frames], denoted x_t in the paper
timesteps: [batch_size] (int)
seed: [batch_size, njoints, nfeats]
"""
if x.shape[2] == 1:
x = x.squeeze(2)
x = x.reshape(x.shape[0], self.joint_num, -1, x.shape[2])
bs, njoints, nfeats, nframes = x.shape # [bs, 3, 128, 32]
# need to be an arrary, especially when bs is 1
# timesteps = timesteps.expand(bs).clone()
time_emb = self.time_proj(timesteps)
time_emb = time_emb.to(dtype=x.dtype)
if cond_time is not None and self.cond_proj is not None:
cond_time = cond_time.expand(bs).clone()
cond_emb = self.cond_proj(cond_time)
cond_emb = cond_emb.to(dtype=x.dtype)
emb_t = self.time_embedding(time_emb, cond_emb)
else:
emb_t = self.time_embedding(time_emb)
if self.n_seed != 0:
embed_text = self.embed_text(seed.reshape(bs, -1))
emb_seed = embed_text
xseq = self.input_process(x)
# add the seed information
embed_style_2 = (emb_seed + emb_t).unsqueeze(1).unsqueeze(2).expand(-1, self.joint_num, self.seq_len, -1) # (300, 256)
xseq = torch.cat([embed_style_2, xseq], axis=-1) # -> [88, 300, 576]
xseq = self.input_process2(xseq)
# apply the positional encoding
xseq = xseq.reshape(bs * self.joint_num, nframes, -1)
pos_emb = self.rel_pos(xseq)
xseq, _ = apply_rotary_pos_emb(xseq, xseq, pos_emb)
xseq = xseq.reshape(bs, self.joint_num, nframes, -1)
xseq = xseq.view(bs, self.seq_len, -1)
for block in self.cross_attn_blocks:
xseq = block(xseq, at_feat)
xseq = xseq.view(bs, njoints, self.seq_len, -1)
for block in self.mytimmblocks:
xseq = block(xseq)
output = xseq
output = self.output_process(output)
return output |