Spaces:
Runtime error
Runtime error
| # Cherry-picked some good parts from ComfyUI with some bad parts fixed | |
| import sys | |
| import time | |
| import psutil | |
| import torch | |
| import platform | |
| from enum import Enum | |
| from backend import stream | |
| from backend.args import args | |
| cpu = torch.device('cpu') | |
| class VRAMState(Enum): | |
| DISABLED = 0 # No vram present: no need to move models to vram | |
| NO_VRAM = 1 # Very low vram: enable all the options to save vram | |
| LOW_VRAM = 2 | |
| NORMAL_VRAM = 3 | |
| HIGH_VRAM = 4 | |
| SHARED = 5 # No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. | |
| class CPUState(Enum): | |
| GPU = 0 | |
| CPU = 1 | |
| MPS = 2 | |
| # Determine VRAM State | |
| vram_state = VRAMState.NORMAL_VRAM | |
| set_vram_to = VRAMState.NORMAL_VRAM | |
| cpu_state = CPUState.GPU | |
| total_vram = 0 | |
| lowvram_available = True | |
| xpu_available = False | |
| if args.pytorch_deterministic: | |
| print("Using deterministic algorithms for pytorch") | |
| torch.use_deterministic_algorithms(True, warn_only=True) | |
| directml_enabled = False | |
| if args.directml is not None: | |
| import torch_directml | |
| directml_enabled = True | |
| device_index = args.directml | |
| if device_index < 0: | |
| directml_device = torch_directml.device() | |
| else: | |
| directml_device = torch_directml.device(device_index) | |
| print("Using directml with device: {}".format(torch_directml.device_name(device_index))) | |
| try: | |
| import intel_extension_for_pytorch as ipex | |
| if torch.xpu.is_available(): | |
| xpu_available = True | |
| except: | |
| pass | |
| try: | |
| if torch.backends.mps.is_available(): | |
| cpu_state = CPUState.MPS | |
| import torch.mps | |
| except: | |
| pass | |
| if args.always_cpu: | |
| cpu_state = CPUState.CPU | |
| def is_intel_xpu(): | |
| global cpu_state | |
| global xpu_available | |
| if cpu_state == CPUState.GPU: | |
| if xpu_available: | |
| return True | |
| return False | |
| def get_torch_device(): | |
| global directml_enabled | |
| global cpu_state | |
| if directml_enabled: | |
| global directml_device | |
| return directml_device | |
| if cpu_state == CPUState.MPS: | |
| return torch.device("mps") | |
| if cpu_state == CPUState.CPU: | |
| return torch.device("cpu") | |
| else: | |
| if is_intel_xpu(): | |
| return torch.device("xpu", torch.xpu.current_device()) | |
| else: | |
| return torch.device(torch.cuda.current_device()) | |
| def get_total_memory(dev=None, torch_total_too=False): | |
| global directml_enabled | |
| if dev is None: | |
| dev = get_torch_device() | |
| if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): | |
| mem_total = psutil.virtual_memory().total | |
| mem_total_torch = mem_total | |
| else: | |
| if directml_enabled: | |
| mem_total = 1024 * 1024 * 1024 # TODO | |
| mem_total_torch = mem_total | |
| elif is_intel_xpu(): | |
| stats = torch.xpu.memory_stats(dev) | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| mem_total_torch = mem_reserved | |
| mem_total = torch.xpu.get_device_properties(dev).total_memory | |
| else: | |
| stats = torch.cuda.memory_stats(dev) | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| _, mem_total_cuda = torch.cuda.mem_get_info(dev) | |
| mem_total_torch = mem_reserved | |
| mem_total = mem_total_cuda | |
| if torch_total_too: | |
| return (mem_total, mem_total_torch) | |
| else: | |
| return mem_total | |
| total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) | |
| total_ram = psutil.virtual_memory().total / (1024 * 1024) | |
| print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) | |
| try: | |
| print("pytorch version: {}".format(torch.version.__version__)) | |
| except: | |
| pass | |
| try: | |
| OOM_EXCEPTION = torch.cuda.OutOfMemoryError | |
| except: | |
| OOM_EXCEPTION = Exception | |
| if directml_enabled: | |
| OOM_EXCEPTION = Exception | |
| XFORMERS_VERSION = "" | |
| XFORMERS_ENABLED_VAE = True | |
| if args.disable_xformers: | |
| XFORMERS_IS_AVAILABLE = False | |
| else: | |
| try: | |
| import xformers | |
| import xformers.ops | |
| XFORMERS_IS_AVAILABLE = True | |
| try: | |
| XFORMERS_IS_AVAILABLE = xformers._has_cpp_library | |
| except: | |
| pass | |
| try: | |
| XFORMERS_VERSION = xformers.version.__version__ | |
| print("xformers version: {}".format(XFORMERS_VERSION)) | |
| if XFORMERS_VERSION.startswith("0.0.18"): | |
| print("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") | |
| print("Please downgrade or upgrade xformers to a different version.\n") | |
| XFORMERS_ENABLED_VAE = False | |
| except: | |
| pass | |
| except: | |
| XFORMERS_IS_AVAILABLE = False | |
| def is_nvidia(): | |
| global cpu_state | |
| if cpu_state == CPUState.GPU: | |
| if torch.version.cuda: | |
| return True | |
| return False | |
| ENABLE_PYTORCH_ATTENTION = False | |
| if args.attention_pytorch: | |
| ENABLE_PYTORCH_ATTENTION = True | |
| XFORMERS_IS_AVAILABLE = False | |
| VAE_DTYPES = [torch.float32] | |
| try: | |
| if is_nvidia(): | |
| torch_version = torch.version.__version__ | |
| if int(torch_version[0]) >= 2: | |
| if ENABLE_PYTORCH_ATTENTION == False and args.attention_split == False and args.attention_quad == False: | |
| ENABLE_PYTORCH_ATTENTION = True | |
| if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8: | |
| VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES | |
| if is_intel_xpu(): | |
| if args.attention_split == False and args.attention_quad == False: | |
| ENABLE_PYTORCH_ATTENTION = True | |
| except: | |
| pass | |
| if is_intel_xpu(): | |
| VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES | |
| if args.vae_in_cpu: | |
| VAE_DTYPES = [torch.float32] | |
| VAE_ALWAYS_TILED = False | |
| if ENABLE_PYTORCH_ATTENTION: | |
| torch.backends.cuda.enable_math_sdp(True) | |
| torch.backends.cuda.enable_flash_sdp(True) | |
| torch.backends.cuda.enable_mem_efficient_sdp(True) | |
| if args.always_low_vram: | |
| set_vram_to = VRAMState.LOW_VRAM | |
| lowvram_available = True | |
| elif args.always_no_vram: | |
| set_vram_to = VRAMState.NO_VRAM | |
| elif args.always_high_vram or args.always_gpu: | |
| vram_state = VRAMState.HIGH_VRAM | |
| FORCE_FP32 = False | |
| FORCE_FP16 = False | |
| if args.all_in_fp32: | |
| print("Forcing FP32, if this improves things please report it.") | |
| FORCE_FP32 = True | |
| if args.all_in_fp16: | |
| print("Forcing FP16.") | |
| FORCE_FP16 = True | |
| if lowvram_available: | |
| if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): | |
| vram_state = set_vram_to | |
| if cpu_state != CPUState.GPU: | |
| vram_state = VRAMState.DISABLED | |
| if cpu_state == CPUState.MPS: | |
| vram_state = VRAMState.SHARED | |
| print(f"Set vram state to: {vram_state.name}") | |
| ALWAYS_VRAM_OFFLOAD = args.always_offload_from_vram | |
| if ALWAYS_VRAM_OFFLOAD: | |
| print("Always offload VRAM") | |
| PIN_SHARED_MEMORY = args.pin_shared_memory | |
| if PIN_SHARED_MEMORY: | |
| print("Always pin shared GPU memory") | |
| def get_torch_device_name(device): | |
| if hasattr(device, 'type'): | |
| if device.type == "cuda": | |
| try: | |
| allocator_backend = torch.cuda.get_allocator_backend() | |
| except: | |
| allocator_backend = "" | |
| return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) | |
| else: | |
| return "{}".format(device.type) | |
| elif is_intel_xpu(): | |
| return "{} {}".format(device, torch.xpu.get_device_name(device)) | |
| else: | |
| return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) | |
| try: | |
| torch_device_name = get_torch_device_name(get_torch_device()) | |
| print("Device: {}".format(torch_device_name)) | |
| except: | |
| torch_device_name = '' | |
| print("Could not pick default device.") | |
| if 'rtx' in torch_device_name.lower(): | |
| if not args.cuda_malloc: | |
| print('Hint: your device supports --cuda-malloc for potential speed improvements.') | |
| current_loaded_models = [] | |
| def state_dict_size(sd, exclude_device=None): | |
| module_mem = 0 | |
| for k in sd: | |
| t = sd[k] | |
| if exclude_device is not None: | |
| if t.device == exclude_device: | |
| continue | |
| module_mem += t.nelement() * t.element_size() | |
| return module_mem | |
| def state_dict_dtype(state_dict): | |
| for k in state_dict.keys(): | |
| if 'bitsandbytes__nf4' in k: | |
| return 'nf4' | |
| if 'bitsandbytes__fp4' in k: | |
| return 'fp4' | |
| dtype_counts = {} | |
| for tensor in state_dict.values(): | |
| dtype = tensor.dtype | |
| if dtype in dtype_counts: | |
| dtype_counts[dtype] += 1 | |
| else: | |
| dtype_counts[dtype] = 1 | |
| major_dtype = None | |
| max_count = 0 | |
| for dtype, count in dtype_counts.items(): | |
| if count > max_count: | |
| max_count = count | |
| major_dtype = dtype | |
| return major_dtype | |
| def module_size(module, exclude_device=None): | |
| module_mem = 0 | |
| for p in module.parameters(): | |
| t = p.data | |
| if exclude_device is not None: | |
| if t.device == exclude_device: | |
| continue | |
| element_size = t.element_size() | |
| if getattr(p, 'quant_type', None) in ['fp4', 'nf4']: | |
| if element_size > 1: | |
| # not quanted yet | |
| element_size = 0.55 # a bit more than 0.5 because of quant state parameters | |
| else: | |
| # quanted | |
| element_size = 1.1 # a bit more than 0.5 because of quant state parameters | |
| module_mem += t.nelement() * element_size | |
| return module_mem | |
| class LoadedModel: | |
| def __init__(self, model, memory_required): | |
| self.model = model | |
| self.memory_required = memory_required | |
| self.model_accelerated = False | |
| self.device = model.load_device | |
| def model_memory(self): | |
| return self.model.model_size() | |
| def model_memory_required(self, device): | |
| return module_size(self.model.model, exclude_device=device) | |
| def model_load(self, model_gpu_memory_when_using_cpu_swap=-1): | |
| patch_model_to = None | |
| do_not_need_cpu_swap = model_gpu_memory_when_using_cpu_swap < 0 | |
| if do_not_need_cpu_swap: | |
| patch_model_to = self.device | |
| self.model.model_patches_to(self.device) | |
| self.model.model_patches_to(self.model.model_dtype()) | |
| try: | |
| self.real_model = self.model.patch_model(device_to=patch_model_to) | |
| except Exception as e: | |
| self.model.unpatch_model(self.model.offload_device) | |
| self.model_unload() | |
| raise e | |
| if not do_not_need_cpu_swap: | |
| real_async_memory = 0 | |
| mem_counter = 0 | |
| for m in self.real_model.modules(): | |
| if hasattr(m, "parameters_manual_cast"): | |
| m.prev_parameters_manual_cast = m.parameters_manual_cast | |
| m.parameters_manual_cast = True | |
| module_mem = module_size(m) | |
| if mem_counter + module_mem < model_gpu_memory_when_using_cpu_swap: | |
| m.to(self.device) | |
| mem_counter += module_mem | |
| else: | |
| real_async_memory += module_mem | |
| m.to(self.model.offload_device) | |
| if PIN_SHARED_MEMORY and is_device_cpu(self.model.offload_device): | |
| m._apply(lambda x: x.pin_memory()) | |
| elif hasattr(m, "weight"): | |
| m.to(self.device) | |
| mem_counter += module_size(m) | |
| print(f"[Memory Management] Swap disabled for", type(m).__name__) | |
| if stream.should_use_stream(): | |
| print(f"[Memory Management] Loaded to CPU Swap: {real_async_memory / (1024 * 1024):.2f} MB (asynchronous method)") | |
| else: | |
| print(f"[Memory Management] Loaded to CPU Swap: {real_async_memory / (1024 * 1024):.2f} MB (blocked method)") | |
| print(f"[Memory Management] Loaded to GPU: {mem_counter / (1024 * 1024):.2f} MB") | |
| self.model_accelerated = True | |
| if is_intel_xpu() and not args.disable_ipex_hijack: | |
| self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True) | |
| return self.real_model | |
| def model_unload(self, avoid_model_moving=False): | |
| if self.model_accelerated: | |
| for m in self.real_model.modules(): | |
| if hasattr(m, "prev_parameters_manual_cast"): | |
| m.parameters_manual_cast = m.prev_parameters_manual_cast | |
| del m.prev_parameters_manual_cast | |
| self.model_accelerated = False | |
| if avoid_model_moving: | |
| self.model.unpatch_model() | |
| else: | |
| self.model.unpatch_model(self.model.offload_device) | |
| self.model.model_patches_to(self.model.offload_device) | |
| def __eq__(self, other): | |
| return self.model is other.model # and self.memory_required == other.memory_required | |
| current_inference_memory = 1024 * 1024 * 1024 | |
| def minimum_inference_memory(): | |
| global current_inference_memory | |
| return current_inference_memory | |
| def unload_model_clones(model): | |
| to_unload = [] | |
| for i in range(len(current_loaded_models)): | |
| if model.is_clone(current_loaded_models[i].model): | |
| to_unload = [i] + to_unload | |
| if len(to_unload) > 0: | |
| print(f"Reuse {len(to_unload)} loaded models") | |
| for i in to_unload: | |
| current_loaded_models.pop(i).model_unload(avoid_model_moving=True) | |
| def free_memory(memory_required, device, keep_loaded=[]): | |
| offload_everything = ALWAYS_VRAM_OFFLOAD or vram_state == VRAMState.NO_VRAM | |
| unloaded_model = False | |
| for i in range(len(current_loaded_models) - 1, -1, -1): | |
| if not offload_everything: | |
| if get_free_memory(device) > memory_required: | |
| break | |
| shift_model = current_loaded_models[i] | |
| if shift_model.device == device: | |
| if shift_model not in keep_loaded: | |
| m = current_loaded_models.pop(i) | |
| m.model_unload() | |
| del m | |
| unloaded_model = True | |
| if unloaded_model: | |
| soft_empty_cache() | |
| else: | |
| if vram_state != VRAMState.HIGH_VRAM: | |
| mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) | |
| if mem_free_torch > mem_free_total * 0.25: | |
| soft_empty_cache() | |
| def compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, inference_memory): | |
| maximum_memory_available = current_free_mem - inference_memory | |
| k_1GB = float(inference_memory / (1024 * 1024 * 1024)) | |
| k_1GB = max(0.0, min(1.0, k_1GB)) | |
| adaptive_safe_factor = 1.0 - 0.23 * k_1GB | |
| suggestion = maximum_memory_available * adaptive_safe_factor | |
| return int(max(0, suggestion)) | |
| def load_models_gpu(models, memory_required=0): | |
| global vram_state | |
| execution_start_time = time.perf_counter() | |
| extra_mem = max(minimum_inference_memory(), memory_required) | |
| models_to_load = [] | |
| models_already_loaded = [] | |
| for x in models: | |
| loaded_model = LoadedModel(x, memory_required=memory_required) | |
| if loaded_model in current_loaded_models: | |
| index = current_loaded_models.index(loaded_model) | |
| current_loaded_models.insert(0, current_loaded_models.pop(index)) | |
| models_already_loaded.append(loaded_model) | |
| else: | |
| if hasattr(x, "model"): | |
| print(f"To load target model {x.model.__class__.__name__}") | |
| models_to_load.append(loaded_model) | |
| if len(models_to_load) == 0: | |
| devs = set(map(lambda a: a.device, models_already_loaded)) | |
| for d in devs: | |
| if d != torch.device("cpu"): | |
| free_memory(extra_mem, d, models_already_loaded) | |
| moving_time = time.perf_counter() - execution_start_time | |
| if moving_time > 0.1: | |
| print(f'Memory cleanup has taken {moving_time:.2f} seconds') | |
| return | |
| print(f"Begin to load {len(models_to_load)} model{'s' if len(models_to_load) > 1 else ''}") | |
| total_memory_required = {} | |
| for loaded_model in models_to_load: | |
| unload_model_clones(loaded_model.model) | |
| total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) | |
| for device in total_memory_required: | |
| if device != torch.device("cpu"): | |
| free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded) | |
| for loaded_model in models_to_load: | |
| model = loaded_model.model | |
| torch_dev = model.load_device | |
| if is_device_cpu(torch_dev): | |
| vram_set_state = VRAMState.DISABLED | |
| else: | |
| vram_set_state = vram_state | |
| model_gpu_memory_when_using_cpu_swap = -1 | |
| if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): | |
| model_memory = loaded_model.model_memory_required(torch_dev) | |
| current_free_mem = get_free_memory(torch_dev) | |
| inference_memory = minimum_inference_memory() | |
| estimated_remaining_memory = current_free_mem - model_memory - inference_memory | |
| print(f"[Memory Management] Current Free GPU Memory: {current_free_mem / (1024 * 1024):.2f} MB") | |
| print(f"[Memory Management] Required Model Memory: {model_memory / (1024 * 1024):.2f} MB") | |
| print(f"[Memory Management] Required Inference Memory: {inference_memory / (1024 * 1024):.2f} MB") | |
| print(f"[Memory Management] Estimated Remaining GPU Memory: {estimated_remaining_memory / (1024 * 1024):.2f} MB") | |
| if estimated_remaining_memory < 0: | |
| vram_set_state = VRAMState.LOW_VRAM | |
| model_gpu_memory_when_using_cpu_swap = compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, inference_memory) | |
| if vram_set_state == VRAMState.NO_VRAM: | |
| model_gpu_memory_when_using_cpu_swap = 0 | |
| loaded_model.model_load(model_gpu_memory_when_using_cpu_swap) | |
| current_loaded_models.insert(0, loaded_model) | |
| moving_time = time.perf_counter() - execution_start_time | |
| print(f'Moving model(s) has taken {moving_time:.2f} seconds') | |
| return | |
| def load_model_gpu(model): | |
| return load_models_gpu([model]) | |
| def cleanup_models(): | |
| to_delete = [] | |
| for i in range(len(current_loaded_models)): | |
| if sys.getrefcount(current_loaded_models[i].model) <= 2: | |
| to_delete = [i] + to_delete | |
| for i in to_delete: | |
| x = current_loaded_models.pop(i) | |
| x.model_unload() | |
| del x | |
| def dtype_size(dtype): | |
| dtype_size = 4 | |
| if dtype == torch.float16 or dtype == torch.bfloat16: | |
| dtype_size = 2 | |
| elif dtype == torch.float32: | |
| dtype_size = 4 | |
| else: | |
| try: | |
| dtype_size = dtype.itemsize | |
| except: # Old pytorch doesn't have .itemsize | |
| pass | |
| return dtype_size | |
| def unet_offload_device(): | |
| if vram_state == VRAMState.HIGH_VRAM: | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| def unet_inital_load_device(parameters, dtype): | |
| torch_dev = get_torch_device() | |
| if vram_state == VRAMState.HIGH_VRAM: | |
| return torch_dev | |
| cpu_dev = torch.device("cpu") | |
| if ALWAYS_VRAM_OFFLOAD: | |
| return cpu_dev | |
| model_size = dtype_size(dtype) * parameters | |
| mem_dev = get_free_memory(torch_dev) | |
| mem_cpu = get_free_memory(cpu_dev) | |
| if mem_dev > mem_cpu and model_size < mem_dev: | |
| return torch_dev | |
| else: | |
| return cpu_dev | |
| def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): | |
| if args.unet_in_bf16: | |
| return torch.bfloat16 | |
| if args.unet_in_fp16: | |
| return torch.float16 | |
| if args.unet_in_fp8_e4m3fn: | |
| return torch.float8_e4m3fn | |
| if args.unet_in_fp8_e5m2: | |
| return torch.float8_e5m2 | |
| if should_use_fp16(device=device, model_params=model_params, manual_cast=True): | |
| if torch.float16 in supported_dtypes: | |
| return torch.float16 | |
| if should_use_bf16(device, model_params=model_params, manual_cast=True): | |
| if torch.bfloat16 in supported_dtypes: | |
| return torch.bfloat16 | |
| return torch.float32 | |
| # None means no manual cast | |
| def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): | |
| if weight_dtype == torch.float32: | |
| return None | |
| fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) | |
| if fp16_supported and weight_dtype == torch.float16: | |
| return None | |
| bf16_supported = should_use_bf16(inference_device) | |
| if bf16_supported and weight_dtype == torch.bfloat16: | |
| return None | |
| if fp16_supported and torch.float16 in supported_dtypes: | |
| return torch.float16 | |
| elif bf16_supported and torch.bfloat16 in supported_dtypes: | |
| return torch.bfloat16 | |
| else: | |
| return torch.float32 | |
| def get_computation_dtype(inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): | |
| for candidate in supported_dtypes: | |
| if candidate == torch.float16: | |
| if should_use_fp16(inference_device, prioritize_performance=False): | |
| return candidate | |
| if candidate == torch.bfloat16: | |
| if should_use_bf16(inference_device): | |
| return candidate | |
| return torch.float32 | |
| def text_encoder_offload_device(): | |
| if args.always_gpu: | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| def text_encoder_device(): | |
| if args.always_gpu: | |
| return get_torch_device() | |
| elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: | |
| if should_use_fp16(prioritize_performance=False): | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| else: | |
| return torch.device("cpu") | |
| def text_encoder_dtype(device=None): | |
| if args.clip_in_fp8_e4m3fn: | |
| return torch.float8_e4m3fn | |
| elif args.clip_in_fp8_e5m2: | |
| return torch.float8_e5m2 | |
| elif args.clip_in_fp16: | |
| return torch.float16 | |
| elif args.clip_in_fp32: | |
| return torch.float32 | |
| if is_device_cpu(device): | |
| return torch.float16 | |
| return torch.float16 | |
| def intermediate_device(): | |
| if args.always_gpu: | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| def vae_device(): | |
| if args.vae_in_cpu: | |
| return torch.device("cpu") | |
| return get_torch_device() | |
| def vae_offload_device(): | |
| if args.always_gpu: | |
| return get_torch_device() | |
| else: | |
| return torch.device("cpu") | |
| def vae_dtype(device=None, allowed_dtypes=[]): | |
| global VAE_DTYPES | |
| if args.vae_in_fp16: | |
| return torch.float16 | |
| elif args.vae_in_bf16: | |
| return torch.bfloat16 | |
| elif args.vae_in_fp32: | |
| return torch.float32 | |
| for d in allowed_dtypes: | |
| if d == torch.float16 and should_use_fp16(device, prioritize_performance=False): | |
| return d | |
| if d in VAE_DTYPES: | |
| return d | |
| return VAE_DTYPES[0] | |
| print(f"VAE dtype preferences: {VAE_DTYPES} -> {vae_dtype()}") | |
| def get_autocast_device(dev): | |
| if hasattr(dev, 'type'): | |
| return dev.type | |
| return "cuda" | |
| def supports_dtype(device, dtype): # TODO | |
| if dtype == torch.float32: | |
| return True | |
| if is_device_cpu(device): | |
| return False | |
| if dtype == torch.float16: | |
| return True | |
| if dtype == torch.bfloat16: | |
| return True | |
| return False | |
| def supports_cast(device, dtype): # TODO | |
| if dtype == torch.float32: | |
| return True | |
| if dtype == torch.float16: | |
| return True | |
| if directml_enabled: # TODO: test this | |
| return False | |
| if dtype == torch.bfloat16: | |
| return True | |
| if is_device_mps(device): | |
| return False | |
| if dtype == torch.float8_e4m3fn: | |
| return True | |
| if dtype == torch.float8_e5m2: | |
| return True | |
| return False | |
| def pick_weight_dtype(dtype, fallback_dtype, device=None): | |
| if dtype is None: | |
| dtype = fallback_dtype | |
| elif dtype_size(dtype) > dtype_size(fallback_dtype): | |
| dtype = fallback_dtype | |
| if not supports_cast(device, dtype): | |
| dtype = fallback_dtype | |
| return dtype | |
| def device_supports_non_blocking(device): | |
| if is_device_mps(device): | |
| return False # pytorch bug? mps doesn't support non blocking | |
| if is_intel_xpu(): | |
| return False | |
| if args.pytorch_deterministic: # TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews) | |
| return False | |
| if directml_enabled: | |
| return False | |
| return True | |
| def device_should_use_non_blocking(device): | |
| if not device_supports_non_blocking(device): | |
| return False | |
| return False | |
| # return True #TODO: figure out why this causes memory issues on Nvidia and possibly others | |
| def force_channels_last(): | |
| if args.force_channels_last: | |
| return True | |
| # TODO | |
| return False | |
| def cast_to_device(tensor, device, dtype, copy=False): | |
| device_supports_cast = False | |
| if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: | |
| device_supports_cast = True | |
| elif tensor.dtype == torch.bfloat16: | |
| if hasattr(device, 'type') and device.type.startswith("cuda"): | |
| device_supports_cast = True | |
| elif is_intel_xpu(): | |
| device_supports_cast = True | |
| non_blocking = device_should_use_non_blocking(device) | |
| if device_supports_cast: | |
| if copy: | |
| if tensor.device == device: | |
| return tensor.to(dtype, copy=copy, non_blocking=non_blocking) | |
| return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) | |
| else: | |
| return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) | |
| else: | |
| return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) | |
| def xformers_enabled(): | |
| global directml_enabled | |
| global cpu_state | |
| if cpu_state != CPUState.GPU: | |
| return False | |
| if is_intel_xpu(): | |
| return False | |
| if directml_enabled: | |
| return False | |
| return XFORMERS_IS_AVAILABLE | |
| def xformers_enabled_vae(): | |
| enabled = xformers_enabled() | |
| if not enabled: | |
| return False | |
| return XFORMERS_ENABLED_VAE | |
| def pytorch_attention_enabled(): | |
| global ENABLE_PYTORCH_ATTENTION | |
| return ENABLE_PYTORCH_ATTENTION | |
| def pytorch_attention_flash_attention(): | |
| global ENABLE_PYTORCH_ATTENTION | |
| if ENABLE_PYTORCH_ATTENTION: | |
| # TODO: more reliable way of checking for flash attention? | |
| if is_nvidia(): # pytorch flash attention only works on Nvidia | |
| return True | |
| if is_intel_xpu(): | |
| return True | |
| return False | |
| def force_upcast_attention_dtype(): | |
| upcast = args.force_upcast_attention | |
| try: | |
| if platform.mac_ver()[0] in ['14.5']: # black image bug on OSX Sonoma 14.5 | |
| upcast = True | |
| except: | |
| pass | |
| if upcast: | |
| return torch.float32 | |
| else: | |
| return None | |
| def get_free_memory(dev=None, torch_free_too=False): | |
| global directml_enabled | |
| if dev is None: | |
| dev = get_torch_device() | |
| if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): | |
| mem_free_total = psutil.virtual_memory().available | |
| mem_free_torch = mem_free_total | |
| else: | |
| if directml_enabled: | |
| mem_free_total = 1024 * 1024 * 1024 # TODO | |
| mem_free_torch = mem_free_total | |
| elif is_intel_xpu(): | |
| stats = torch.xpu.memory_stats(dev) | |
| mem_active = stats['active_bytes.all.current'] | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| mem_free_torch = mem_reserved - mem_active | |
| mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved | |
| mem_free_total = mem_free_xpu + mem_free_torch | |
| else: | |
| stats = torch.cuda.memory_stats(dev) | |
| mem_active = stats['active_bytes.all.current'] | |
| mem_reserved = stats['reserved_bytes.all.current'] | |
| mem_free_cuda, _ = torch.cuda.mem_get_info(dev) | |
| mem_free_torch = mem_reserved - mem_active | |
| mem_free_total = mem_free_cuda + mem_free_torch | |
| if torch_free_too: | |
| return (mem_free_total, mem_free_torch) | |
| else: | |
| return mem_free_total | |
| def cpu_mode(): | |
| global cpu_state | |
| return cpu_state == CPUState.CPU | |
| def mps_mode(): | |
| global cpu_state | |
| return cpu_state == CPUState.MPS | |
| def is_device_type(device, type): | |
| if hasattr(device, 'type'): | |
| if (device.type == type): | |
| return True | |
| return False | |
| def is_device_cpu(device): | |
| return is_device_type(device, 'cpu') | |
| def is_device_mps(device): | |
| return is_device_type(device, 'mps') | |
| def is_device_cuda(device): | |
| return is_device_type(device, 'cuda') | |
| def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): | |
| global directml_enabled | |
| if device is not None: | |
| if is_device_cpu(device): | |
| return False | |
| if FORCE_FP16: | |
| return True | |
| if device is not None: | |
| if is_device_mps(device): | |
| return True | |
| if FORCE_FP32: | |
| return False | |
| if directml_enabled: | |
| return False | |
| if mps_mode(): | |
| return True | |
| if cpu_mode(): | |
| return False | |
| if is_intel_xpu(): | |
| return True | |
| if torch.version.hip: | |
| return True | |
| props = torch.cuda.get_device_properties("cuda") | |
| if props.major >= 8: | |
| return True | |
| if props.major < 6: | |
| return False | |
| fp16_works = False | |
| # FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled | |
| # when the model doesn't actually fit on the card | |
| # TODO: actually test if GP106 and others have the same type of behavior | |
| nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"] | |
| for x in nvidia_10_series: | |
| if x in props.name.lower(): | |
| fp16_works = True | |
| if fp16_works or manual_cast: | |
| free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) | |
| if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
| return True | |
| if props.major < 7: | |
| return False | |
| # FP16 is just broken on these cards | |
| nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] | |
| for x in nvidia_16_series: | |
| if x in props.name: | |
| return False | |
| return True | |
| def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): | |
| if device is not None: | |
| if is_device_cpu(device): # TODO ? bf16 works on CPU but is extremely slow | |
| return False | |
| if device is not None: | |
| if is_device_mps(device): | |
| return True | |
| if FORCE_FP32: | |
| return False | |
| if directml_enabled: | |
| return False | |
| if mps_mode(): | |
| return True | |
| if cpu_mode(): | |
| return False | |
| if is_intel_xpu(): | |
| return True | |
| if device is None: | |
| device = torch.device("cuda") | |
| props = torch.cuda.get_device_properties(device) | |
| if props.major >= 8: | |
| return True | |
| bf16_works = torch.cuda.is_bf16_supported() | |
| if bf16_works or manual_cast: | |
| free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) | |
| if (not prioritize_performance) or model_params * 4 > free_model_memory: | |
| return True | |
| return False | |
| def can_install_bnb(): | |
| if not torch.cuda.is_available(): | |
| return False | |
| cuda_version = tuple(int(x) for x in torch.version.cuda.split('.')) | |
| if cuda_version >= (11, 7): | |
| return True | |
| return False | |
| def soft_empty_cache(force=False): | |
| global cpu_state | |
| if cpu_state == CPUState.MPS: | |
| torch.mps.empty_cache() | |
| elif is_intel_xpu(): | |
| torch.xpu.empty_cache() | |
| elif torch.cuda.is_available(): | |
| if force or is_nvidia(): # This seems to make things worse on ROCm so I only do it for cuda | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| def unload_all_models(): | |
| free_memory(1e30, get_torch_device()) | |
| def resolve_lowvram_weight(weight, model, key): # TODO: remove | |
| return weight | |
| # TODO: might be cleaner to put this somewhere else | |
| import threading | |
| class InterruptProcessingException(Exception): | |
| pass | |
| interrupt_processing_mutex = threading.RLock() | |
| interrupt_processing = False | |
| def interrupt_current_processing(value=True): | |
| global interrupt_processing | |
| global interrupt_processing_mutex | |
| with interrupt_processing_mutex: | |
| interrupt_processing = value | |
| def processing_interrupted(): | |
| global interrupt_processing | |
| global interrupt_processing_mutex | |
| with interrupt_processing_mutex: | |
| return interrupt_processing | |
| def throw_exception_if_processing_interrupted(): | |
| global interrupt_processing | |
| global interrupt_processing_mutex | |
| with interrupt_processing_mutex: | |
| if interrupt_processing: | |
| interrupt_processing = False | |
| raise InterruptProcessingException() | |