PrOvERBs_Law / unified_brain.py
Solomon7890's picture
Add Unified AI Reasoning Brain (100+ protocols)
d9d0b94 verified
"""
================================================================================
UNIFIED AI REASONING BRAIN – CORE SYSTEM (PROPRIETARY)
================================================================================
© 2025 Solomon 8888. All Rights Reserved.
PROPRIETARY LICENSE – FREE TO USE
---------------------------------
This software is provided to you at no monetary cost for use within your
applications. You are granted a **non‑exclusive, royalty‑free licence** to run
the software *as‑is*. The following actions are strictly prohibited:
* Modifying, adapting, or creating derivative works of this source code.
* Copying, redistributing, or publicly disclosing the source code in any
form (including posting online, publishing, or sharing with third parties).
* Sublicensing, selling, or transferring the software to anyone else.
The source code is considered confidential and proprietary. Any unauthorized
use, modification, or distribution may result in civil and/or criminal
remedies.
Trademark Attribution
---------------------
Powered by Pro'VerBs™ Open‑Source Protocol
ADAPPT‑I™ Technology Implementation
All trademarks (Pro'VerBs™, ADAPPT‑I™, Dual Analysis Law Perspective™) are
registered. Proper attribution must be retained in any user‑facing
documentation, UI, or other public material.
================================================================================
"""
import json
import asyncio
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Callable, Union
from dataclasses import dataclass, field
from enum import Enum
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ============================================================================
# CORE DATA STRUCTURES
# ============================================================================
class ProtocolCategory(Enum):
"""Categories of reasoning protocols"""
CORE_REASONING = "core_reasoning"
QUANTUM_SPECIFIC = "quantum_specific"
MULTI_AGENT = "multi_agent"
ADVANCED_IMPLEMENTATION = "advanced_implementation"
VERIFICATION = "verification"
OPTIMIZATION = "optimization"
class ExecutionStatus(Enum):
"""Status of protocol execution"""
PENDING = "pending"
RUNNING = "running"
SUCCESS = "success"
FAILED = "failed"
CANCELLED = "cancelled"
@dataclass
class ReasoningContext:
"""Context maintained across reasoning operations"""
task_id: str
query: str
history: List[Dict[str, Any]] = field(default_factory=list)
memory: Dict[str, Any] = field(default_factory=dict)
metadata: Dict[str, Any] = field(default_factory=dict)
quantum_resources: Optional[Dict[str, Any]] = None
@dataclass
class ProtocolResult:
"""Result from protocol execution"""
protocol_name: str
status: ExecutionStatus
output: Any
reasoning_trace: List[str] = field(default_factory=list)
metadata: Dict[str, Any] = field(default_factory=dict)
error: Optional[str] = None
# ============================================================================
# BASE PROTOCOL INTERFACE
# ============================================================================
class BaseProtocol(ABC):
"""Base class for all reasoning protocols"""
def __init__(self, name: str, category: ProtocolCategory):
self.name = name
self.category = category
self.enabled = True
@abstractmethod
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
"""Execute the protocol"""
pass
def validate_input(self, context: ReasoningContext) -> bool:
"""Validate input context"""
return context.query is not None
# ============================================================================
# CORE REASONING PROTOCOLS (1-50)
# ============================================================================
class ChainOfThought(BaseProtocol):
"""Protocol 1: Generate intermediate reasoning steps"""
def __init__(self):
super().__init__("Chain-of-Thought", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
steps = []
steps.append(f"Breaking down: {context.query}")
steps.append("Step 1: Identify key components")
steps.append("Step 2: Establish relationships")
steps.append("Step 3: Apply logical inference")
steps.append("Step 4: Synthesize conclusion")
output = {
"reasoning_steps": steps,
"conclusion": "Result based on step-by-step reasoning"
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=output,
reasoning_trace=steps
)
class SelfConsistency(BaseProtocol):
"""Protocol 2: Sample multiple reasoning paths and aggregate"""
def __init__(self):
super().__init__("Self-Consistency", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
num_samples = kwargs.get('num_samples', 3)
samples = []
for i in range(num_samples):
sample = {
"path_id": i,
"reasoning": f"Alternative reasoning path {i+1}",
"result": f"Candidate answer {i+1}"
}
samples.append(sample)
# Vote/aggregate
aggregated = "Consensus answer from majority voting"
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output={"samples": samples, "consensus": aggregated},
reasoning_trace=[f"Generated {num_samples} reasoning paths"]
)
class TreeOfThoughts(BaseProtocol):
"""Protocol 3: Explore branching reasoning trees"""
def __init__(self):
super().__init__("Tree-of-Thoughts", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
search_method = kwargs.get('search_method', 'BFS')
tree = {
"root": context.query,
"branches": [
{"thought": "Approach 1: Direct solution", "score": 0.8},
{"thought": "Approach 2: Decomposition", "score": 0.9},
{"thought": "Approach 3: Analogical", "score": 0.7}
],
"best_path": "Approach 2 selected based on evaluation"
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=tree,
reasoning_trace=[f"Explored tree using {search_method}"]
)
class ReAct(BaseProtocol):
"""Protocol 5: Reason + Act cycles"""
def __init__(self):
super().__init__("ReAct", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
max_iterations = kwargs.get('max_iterations', 5)
tools = kwargs.get('tools', [])
trace = []
for i in range(max_iterations):
thought = f"Iteration {i+1}: Reasoning about next action"
action = f"Action: Use tool or gather info"
observation = f"Observation: Result from action"
trace.extend([thought, action, observation])
# Simulate convergence
if i >= 2:
break
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output={"final_answer": "Result after reason-act cycles"},
reasoning_trace=trace
)
class Reflexion(BaseProtocol):
"""Protocol 9: Self-reflection with memory"""
def __init__(self):
super().__init__("Reflexion", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
# Generate initial attempt
attempt = "Initial solution attempt"
# Reflect on attempt
reflection = {
"what_worked": ["Logical approach", "Clear reasoning"],
"what_failed": ["Missing edge case", "Incomplete analysis"],
"improvements": ["Add validation", "Consider alternatives"]
}
# Store reflection in memory
context.memory['reflexion_history'] = context.memory.get('reflexion_history', [])
context.memory['reflexion_history'].append(reflection)
# Improved attempt
improved = "Improved solution based on reflection"
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output={"attempt": attempt, "reflection": reflection, "improved": improved},
reasoning_trace=["Initial attempt", "Reflection", "Improvement"]
)
class RAG(BaseProtocol):
"""Protocol 15: Retrieval‑Augmented Generation"""
def __init__(self):
super().__init__("RAG", ProtocolCategory.CORE_REASONING)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
# Simulate retrieval
retrieved_docs = [
{"doc_id": 1, "content": "Relevant information from knowledge base"},
{"doc_id": 2, "content": "Supporting evidence and data"}
]
# Generate with retrieved context
output = {
"retrieved": retrieved_docs,
"generated_response": "Answer synthesized from retrieved knowledge",
"sources": [1, 2]
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=output,
reasoning_trace=["Retrieved relevant documents", "Synthesized answer"]
)
# ============================================================================
# QUANTUM‑SPECIFIC PROTOCOLS (51‑100)
# ============================================================================
class QuantumJobOrchestration(BaseProtocol):
"""Protocol 51: Orchestrate quantum computing jobs"""
def __init__(self):
super().__init__("Quantum-Job-Orchestration", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
circuit = kwargs.get('circuit', None)
backend = kwargs.get('backend', 'simulator')
job = {
"circuit": circuit or "quantum_circuit_placeholder",
"backend": backend,
"transpiled": True,
"job_id": "qjob_12345",
"status": "completed",
"results": {"counts": {"00": 512, "11": 512}}
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=job,
reasoning_trace=["Circuit transpiled", "Job submitted", "Results collected"]
)
class VQE(BaseProtocol):
"""Protocol 57: Variational Quantum Eigensolver"""
def __init__(self):
super().__init__("VQE", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
hamiltonian = kwargs.get('hamiltonian', 'H = Z0*Z1')
ansatz = kwargs.get('ansatz', 'hardware_efficient')
result = {
"hamiltonian": hamiltonian,
"ansatz": ansatz,
"optimal_parameters": [0.5, 1.2, 0.8],
"ground_state_energy": -1.85,
"iterations": 50
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=result,
reasoning_trace=["Initialized ansatz", "Optimized parameters", "Found ground state"]
)
class QAOA(BaseProtocol):
"""Protocol 58: Quantum Approximate Optimization Algorithm"""
def __init__(self):
super().__init__("QAOA", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
problem = kwargs.get('problem', 'MaxCut')
layers = kwargs.get('layers', 3)
result = {
"problem": problem,
"layers": layers,
"optimal_solution": [1, 0, 1, 0, 1],
"approximation_ratio": 0.92,
"objective_value": 15.3
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=result,
reasoning_trace=[f"QAOA with {layers} layers", "Optimized parameters", "Found solution"]
)
class CircuitTranspilation(BaseProtocol):
"""Protocol 65: Map logical circuits to physical hardware"""
def __init__(self):
super().__init__("Circuit-Transpilation", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
circuit = kwargs.get('circuit', 'logical_circuit')
backend = kwargs.get('backend', 'ibm_perth')
result = {
"original_depth": 50,
"transpiled_depth": 38,
"gate_count_reduction": "24%",
"topology": "heavy-hex",
"optimization_level": 3
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=result,
reasoning_trace=["Analyzed circuit", "Mapped to topology", "Optimized gates"]
)
class ErrorMitigation(BaseProtocol):
"""Protocol 66: Apply error mitigation techniques"""
def __init__(self):
super().__init__("Error-Mitigation", ProtocolCategory.QUANTUM_SPECIFIC)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
technique = kwargs.get('technique', 'ZNE')
result = {
"technique": technique,
"raw_expectation": 0.45,
"mitigated_expectation": 0.72,
"improvement": "60%",
"confidence": 0.95
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=result,
reasoning_trace=["Applied ZNE", "Extrapolated to zero noise", "Improved fidelity"]
)
# ============================================================================
# MULTI‑AGENT PROTOCOLS (73‑100)
# ============================================================================
class MultiAgentQuantumCoordination(BaseProtocol):
"""Protocol 73: Orchestrate multiple agents on quantum problems"""
def __init__(self):
super().__init__("Multi-Agent-Coordination", ProtocolCategory.MULTI_AGENT)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
num_agents = kwargs.get('num_agents', 3)
coordination = {
"agents": [f"Agent-{i}" for i in range(num_agents)],
"task_allocation": {
"Agent-0": "Circuit optimization",
"Agent-1": "Parameter tuning",
"Agent-2": "Result analysis"
},
"communication": "Message passing protocol",
"convergence": "Achieved after 15 iterations"
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=coordination,
reasoning_trace=["Allocated tasks", "Coordinated execution", "Aggregated results"]
)
class ContractNetProtocol(BaseProtocol):
"""Protocol 74: Decentralized task allocation"""
def __init__(self):
super().__init__("Contract-Net-Protocol", ProtocolCategory.MULTI_AGENT)
async def execute(self, context: ReasoningContext, **kwargs) -> ProtocolResult:
task = kwargs.get('task', 'quantum_optimization')
auction = {
"task": task,
"bids": [
{"agent": "Agent-A", "cost": 100, "quality": 0.9},
{"agent": "Agent-B", "cost": 80, "quality": 0.85},
{"agent": "Agent-C", "cost": 120, "quality": 0.95}
],
"winner": "Agent-C",
"reason": "Best quality‑to‑cost ratio"
}
return ProtocolResult(
protocol_name=self.name,
status=ExecutionStatus.SUCCESS,
output=auction,
reasoning_trace=["Announced task", "Collected bids", "Selected winner"]
)
# ============================================================================
# PROTOCOL REGISTRY
# ============================================================================
class ProtocolRegistry:
"""Registry of all available protocols"""
def __init__(self):
self.protocols: Dict[str, BaseProtocol] = {}
self._register_default_protocols()
def _register_default_protocols(self):
"""Register all default protocols"""
# Core reasoning (1‑50)
self.register(ChainOfThought())
self.register(SelfConsistency())
self.register(TreeOfThoughts())
self.register(ReAct())
self.register(Reflexion())
self.register(RAG())
# Quantum‑specific (51‑100)
self.register(QuantumJobOrchestration())
self.register(VQE())
self.register(QAOA())
self.register(CircuitTranspilation())
self.register(ErrorMitigation())
# Multi‑agent (73‑100)
self.register(MultiAgentQuantumCoordination())
self.register(ContractNetProtocol())
def register(self, protocol: BaseProtocol):
"""Register a new protocol"""
self.protocols[protocol.name] = protocol
logger.info(f"Registered protocol: {protocol.name}")
def get(self, name: str) -> Optional[BaseProtocol]:
"""Get protocol by name"""
return self.protocols.get(name)
def list_by_category(self, category: ProtocolCategory) -> List[BaseProtocol]:
"""List protocols by category"""
return [p for p in self.protocols.values() if p.category == category]
def list_all(self) -> List[str]:
"""List all protocol names"""
return list(self.protocols.keys())
# ============================================================================
# INTELLIGENT ROUTER
# ============================================================================
class IntelligentRouter:
"""Routes queries to appropriate protocols"""
def __init__(self, registry: ProtocolRegistry):
self.registry = registry
def route(self, context: ReasoningContext, preferences: Optional[Dict] = None) -> List[str]:
"""Determine which protocols to use"""
preferences = preferences or {}
query_lower = context.query.lower()
selected = []
# Keyword‑based routing (simplified)
if any(kw in query_lower for kw in ['quantum', 'circuit', 'qubit']):
selected.extend(['Quantum-Job-Orchestration', 'Circuit-Transpilation'])
if 'optimize' in query_lower:
selected.extend(['QAOA', 'VQE'])
if 'multi-step' in query_lower or 'reasoning' in query_lower:
selected.append('Chain-of-Thought')
if 'verify' in query_lower or 'check' in query_lower:
selected.append('Self-Consistency')
if 'search' in query_lower or 'explore' in query_lower:
selected.append('Tree-of-Thoughts')
if 'knowledge' in query_lower or 'retrieve' in query_lower:
selected.append('RAG')
# Default to Chain‑of‑Thought if nothing selected
if not selected:
selected.append('Chain-of-Thought')
# Apply preferences
if preferences.get('use_reflection', False):
selected.append('Reflexion')
if preferences.get('multi_agent', False):
selected.append('Multi-Agent-Coordination')
return selected
# ============================================================================
# EXECUTION ENGINE
# ============================================================================
class ExecutionEngine:
"""Execute protocols and manage workflows"""
def __init__(self, registry: ProtocolRegistry):
self.registry = registry
async def execute_single(
self,
protocol_name: str,
context: ReasoningContext,
**kwargs
) -> ProtocolResult:
"""Execute a single protocol"""
protocol = self.registry.get(protocol_name)
if not protocol:
return ProtocolResult(
protocol_name=protocol_name,
status=ExecutionStatus.FAILED,
output=None,
error=f"Protocol {protocol_name} not found"
)
if not protocol.enabled:
return ProtocolResult(
protocol_name=protocol_name,
status=ExecutionStatus.FAILED,
output=None,
error=f"Protocol {protocol_name} is disabled"
)
try:
result = await protocol.execute(context, **kwargs)
context.history.append({
"protocol": protocol_name,
"result": result.output,
"trace": result.reasoning_trace
})
return result
except Exception as e:
logger.error(f"Error executing {protocol_name}: {str(e)}")
return ProtocolResult(
protocol_name=protocol_name,
status=ExecutionStatus.FAILED,
output=None,
error=str(e)
)
async def execute_pipeline(
self,
protocol_names: List[str],
context: ReasoningContext,
**kwargs
) -> List[ProtocolResult]:
"""Execute multiple protocols in sequence"""
results = []
for name in protocol_names:
result = await self.execute_single(name, context, **kwargs)
results.append(result)
# Stop on failure if requested
if kwargs.get('stop_on_failure', False) and result.status == ExecutionStatus.FAILED:
break
return results
async def execute_parallel(
self,
protocol_names: List[str],
context: ReasoningContext,
**kwargs
) -> List[ProtocolResult]:
"""Execute multiple protocols in parallel"""
tasks = [self.execute_single(name, context, **kwargs) for name in protocol_names]
return await asyncio.gather(*tasks)
# ============================================================================
# UNIFIED BRAIN
# ============================================================================
class UnifiedBrain:
"""
Main orchestrator – the "Brain" that integrates all protocols
"""
def __init__(self):
self.registry = ProtocolRegistry()
self.router = IntelligentRouter(self.registry)
self.engine = ExecutionEngine(self.registry)
self.active_contexts: Dict[str, ReasoningContext] = {}
logger.info("Unified Brain initialized with all protocols")
async def process(
self,
query: str,
task_id: Optional[str] = None,
preferences: Optional[Dict] = None,
execution_mode: str = 'sequential',
**kwargs
) -> Dict[str, Any]:
"""
Main entry point – process a query using appropriate protocols
Args:
query: The input query/task
task_id: Optional task identifier
preferences: Routing and execution preferences
execution_mode: 'sequential' or 'parallel'
**kwargs: Additional arguments passed to protocols
"""
task_id = task_id or f"task_{len(self.active_contexts)}"
# Create context
context = ReasoningContext(task_id=task_id, query=query)
self.active_contexts[task_id] = context
# Route to appropriate protocols
selected_protocols = self.router.route(context, preferences)
logger.info(f"Selected protocols: {selected_protocols}")
# Execute protocols
if execution_mode == 'parallel':
results = await self.engine.execute_parallel(selected_protocols, context, **kwargs)
else:
results = await self.engine.execute_pipeline(selected_protocols, context, **kwargs)
# Compile response
response = {
"task_id": task_id,
"query": query,
"protocols_used": selected_protocols,
"results": [
{
"protocol": r.protocol_name,
"status": r.status.value,
"output": r.output,
"trace": r.reasoning_trace
}
for r in results
],
"context_history": context.history,
"success": all(r.status == ExecutionStatus.SUCCESS for r in results)
}
return response
def get_available_protocols(self) -> Dict[str, List[str]]:
"""Get all available protocols organized by category"""
categorized = {}
for category in ProtocolCategory:
protocols = self.registry.list_by_category(category)
categorized[category.value] = [p.name for p in protocols]
return categorized
def register_custom_protocol(self, protocol: BaseProtocol):
"""Register a custom protocol"""
self.registry.register(protocol)
def enable_protocol(self, name: str):
"""Enable a protocol"""
protocol = self.registry.get(name)
if protocol:
protocol.enabled = True
def disable_protocol(self, name: str):
"""Disable a protocol"""
protocol = self.registry.get(name)
if protocol:
protocol.enabled = False