Update pipeline_full.py
Browse files- pipeline_full.py +196 -139
pipeline_full.py
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
import os
|
| 3 |
import base64
|
| 4 |
from io import BytesIO
|
| 5 |
-
from typing import List, Dict, Any
|
| 6 |
from collections import deque, defaultdict
|
| 7 |
|
| 8 |
import numpy as np
|
|
@@ -10,6 +10,7 @@ import cv2
|
|
| 10 |
import torch
|
| 11 |
from more_itertools import chunked
|
| 12 |
from PIL import Image
|
|
|
|
| 13 |
|
| 14 |
import supervision as sv
|
| 15 |
from inference import get_model
|
|
@@ -25,77 +26,106 @@ from sports.annotators.soccer import (
|
|
| 25 |
draw_pitch,
|
| 26 |
draw_points_on_pitch,
|
| 27 |
draw_pitch_voronoi_diagram,
|
| 28 |
-
draw_paths_on_pitch
|
| 29 |
)
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
#
|
| 33 |
-
#
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
BALL_ID = 0
|
| 43 |
GOALKEEPER_ID = 1
|
| 44 |
PLAYER_ID = 2
|
| 45 |
REFEREE_ID = 3
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
PITCH_CONFIG = SoccerPitchConfiguration()
|
| 62 |
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
# ------------------------------------
|
| 66 |
-
# Utility for saving images
|
| 67 |
-
# ------------------------------------
|
| 68 |
|
| 69 |
def save_image(path: str, img: np.ndarray) -> None:
|
| 70 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 71 |
-
# supervision uses BGR/ RGB interchangeably; assume RGB here
|
| 72 |
if img.ndim == 3 and img.shape[2] == 3:
|
| 73 |
-
# convert RGB to BGR for cv2
|
| 74 |
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 75 |
else:
|
| 76 |
img_bgr = img
|
| 77 |
cv2.imwrite(path, img_bgr)
|
| 78 |
|
| 79 |
-
|
| 80 |
-
# 1.
|
| 81 |
-
|
| 82 |
|
| 83 |
def step_basic_frames(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
|
|
|
|
|
| 84 |
frame_generator = sv.get_video_frames_generator(video_path)
|
| 85 |
frame = next(frame_generator)
|
| 86 |
|
| 87 |
-
# Raw frame
|
| 88 |
raw_path = os.path.join(out_dir, "frame_raw.png")
|
| 89 |
save_image(raw_path, frame)
|
| 90 |
|
| 91 |
-
# boxes + labels
|
| 92 |
box_annotator = sv.BoxAnnotator(
|
| 93 |
-
color=sv.ColorPalette.from_hex([
|
| 94 |
-
thickness=2
|
| 95 |
)
|
| 96 |
label_annotator = sv.LabelAnnotator(
|
| 97 |
-
color=sv.ColorPalette.from_hex([
|
| 98 |
-
text_color=sv.Color.from_hex(
|
| 99 |
)
|
| 100 |
|
| 101 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
|
@@ -103,8 +133,7 @@ def step_basic_frames(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 103 |
|
| 104 |
labels = [
|
| 105 |
f"{class_name} {confidence:.2f}"
|
| 106 |
-
for class_name, confidence
|
| 107 |
-
in zip(detections["class_name"], detections.confidence)
|
| 108 |
]
|
| 109 |
|
| 110 |
annotated = frame.copy()
|
|
@@ -114,16 +143,15 @@ def step_basic_frames(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 114 |
boxes_path = os.path.join(out_dir, "frame_boxes_labels.png")
|
| 115 |
save_image(boxes_path, annotated)
|
| 116 |
|
| 117 |
-
# ball vs players using ellipse/triangle
|
| 118 |
ellipse_annotator = sv.EllipseAnnotator(
|
| 119 |
-
color=sv.ColorPalette.from_hex([
|
| 120 |
-
thickness=2
|
| 121 |
)
|
| 122 |
triangle_annotator = sv.TriangleAnnotator(
|
| 123 |
-
color=sv.Color.from_hex(
|
| 124 |
base=25,
|
| 125 |
height=21,
|
| 126 |
-
outline_thickness=1
|
| 127 |
)
|
| 128 |
|
| 129 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
|
@@ -149,21 +177,17 @@ def step_basic_frames(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 149 |
"ball_players": ball_players_path,
|
| 150 |
}
|
| 151 |
|
| 152 |
-
|
| 153 |
-
# 2. SigLIP
|
| 154 |
-
|
| 155 |
|
| 156 |
def step_siglip_clustering(video_path: str, out_dir: str) -> Dict[str, str]:
|
| 157 |
-
|
| 158 |
-
PLAYER_ID = PLAYER_ID
|
| 159 |
-
STRIDE = 30
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
)
|
| 164 |
|
| 165 |
crops = []
|
| 166 |
-
from tqdm import tqdm
|
| 167 |
for frame in tqdm(frame_generator, desc="collecting crops (SigLIP)"):
|
| 168 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 169 |
detections = sv.Detections.from_inference(result)
|
|
@@ -180,9 +204,10 @@ def step_siglip_clustering(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 180 |
BATCH_SIZE = 32
|
| 181 |
batches = chunked(crops_pil, BATCH_SIZE)
|
| 182 |
data = []
|
|
|
|
| 183 |
with torch.no_grad():
|
| 184 |
for batch in tqdm(batches, desc="embedding extraction"):
|
| 185 |
-
inputs = EMBEDDINGS_PROCESSOR(images=batch, return_tensors="pt").to(
|
| 186 |
outputs = EMBEDDINGS_MODEL(**inputs)
|
| 187 |
embeddings = torch.mean(outputs.last_hidden_state, dim=1).cpu().numpy()
|
| 188 |
data.append(embeddings)
|
|
@@ -190,27 +215,24 @@ def step_siglip_clustering(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 190 |
data = np.concatenate(data)
|
| 191 |
|
| 192 |
REDUCER = umap.UMAP(n_components=3)
|
| 193 |
-
CLUSTERING_MODEL = KMeans(n_clusters=2)
|
| 194 |
|
| 195 |
projections = REDUCER.fit_transform(data)
|
| 196 |
clusters = CLUSTERING_MODEL.fit_predict(projections)
|
| 197 |
|
| 198 |
-
# build Plotly 3D + JS same as in notebook
|
| 199 |
def pil_image_to_data_uri(image: Image.Image) -> str:
|
| 200 |
buffered = BytesIO()
|
| 201 |
image.save(buffered, format="PNG")
|
| 202 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 203 |
return f"data:image/png;base64,{img_str}"
|
| 204 |
|
| 205 |
-
image_data_uris = {
|
| 206 |
-
f"image_{i}": pil_image_to_data_uri(image) for i, image in enumerate(crops_pil)
|
| 207 |
-
}
|
| 208 |
image_ids = np.array([f"image_{i}" for i in range(len(crops_pil))])
|
| 209 |
|
| 210 |
traces = []
|
| 211 |
unique_labels = np.unique(clusters)
|
| 212 |
-
for
|
| 213 |
-
mask = clusters ==
|
| 214 |
customdata_masked = image_ids[mask]
|
| 215 |
trace = go.Scatter3d(
|
| 216 |
x=projections[mask][:, 0],
|
|
@@ -219,11 +241,9 @@ def step_siglip_clustering(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 219 |
mode="markers+text",
|
| 220 |
text=clusters[mask],
|
| 221 |
customdata=customdata_masked,
|
| 222 |
-
name=str(
|
| 223 |
marker=dict(size=8),
|
| 224 |
-
hovertemplate=
|
| 225 |
-
"<b>class: %{text}</b><br>image ID: %{customdata}<extra></extra>"
|
| 226 |
-
),
|
| 227 |
)
|
| 228 |
traces.append(trace)
|
| 229 |
|
|
@@ -307,22 +327,22 @@ def step_siglip_clustering(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 307 |
</html>
|
| 308 |
"""
|
| 309 |
|
|
|
|
| 310 |
html_path = os.path.join(out_dir, "siglip_clusters.html")
|
| 311 |
with open(html_path, "w", encoding="utf-8") as f:
|
| 312 |
f.write(html_template)
|
| 313 |
|
| 314 |
return {"plot_html": html_path}
|
| 315 |
|
| 316 |
-
|
| 317 |
-
# 3. TeamClassifier training
|
| 318 |
-
|
| 319 |
|
| 320 |
def train_team_classifier_on_video(video_path: str, stride: int = 30) -> None:
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
)
|
| 324 |
crops = []
|
| 325 |
-
from tqdm import tqdm
|
| 326 |
for frame in tqdm(frame_generator, desc="collecting crops (TeamClassifier)"):
|
| 327 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 328 |
detections = sv.Detections.from_inference(result)
|
|
@@ -333,13 +353,11 @@ def train_team_classifier_on_video(video_path: str, stride: int = 30) -> None:
|
|
| 333 |
if crops:
|
| 334 |
TEAM_CLASSIFIER.fit(crops)
|
| 335 |
|
| 336 |
-
# ------------------------------------
|
| 337 |
-
# 4. resolve_goalkeepers_team_id – your function
|
| 338 |
-
# ------------------------------------
|
| 339 |
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
|
|
|
| 343 |
goalkeepers_xy = goalkeepers.get_anchors_coordinates(sv.Position.BOTTOM_CENTER)
|
| 344 |
players_xy = players.get_anchors_coordinates(sv.Position.BOTTOM_CENTER)
|
| 345 |
team_0_centroid = players_xy[players.class_id == 0].mean(axis=0)
|
|
@@ -351,21 +369,79 @@ def resolve_goalkeepers_team_id(
|
|
| 351 |
goalkeepers_team_id.append(0 if dist_0 < dist_1 else 1)
|
| 352 |
return np.array(goalkeepers_team_id)
|
| 353 |
|
| 354 |
-
|
| 355 |
-
# 5.
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
|
|
|
|
|
| 359 |
frame_generator = sv.get_video_frames_generator(video_path)
|
| 360 |
frame = next(frame_generator)
|
| 361 |
|
| 362 |
ellipse_annotator = sv.EllipseAnnotator(
|
| 363 |
-
color=sv.ColorPalette.from_hex([
|
| 364 |
thickness=2,
|
| 365 |
)
|
| 366 |
label_annotator = sv.LabelAnnotator(
|
| 367 |
-
color=sv.ColorPalette.from_hex([
|
| 368 |
-
text_color=sv.Color.from_hex(
|
| 369 |
text_position=sv.Position.BOTTOM_CENTER,
|
| 370 |
)
|
| 371 |
triangle_annotator = sv.TriangleAnnotator(
|
|
@@ -375,7 +451,6 @@ def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 375 |
tracker = sv.ByteTrack()
|
| 376 |
tracker.reset()
|
| 377 |
|
| 378 |
-
# detect ball, goalkeeper, player, referee
|
| 379 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 380 |
detections = sv.Detections.from_inference(result)
|
| 381 |
|
|
@@ -391,9 +466,10 @@ def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 391 |
referees_detections = all_detections[all_detections.class_id == REFEREE_ID]
|
| 392 |
|
| 393 |
players_crops = [sv.crop_image(frame, xyxy) for xyxy in players_detections.xyxy]
|
| 394 |
-
|
|
|
|
| 395 |
|
| 396 |
-
if len(goalkeepers_detections) > 0:
|
| 397 |
goalkeepers_detections.class_id = resolve_goalkeepers_team_id(
|
| 398 |
players_detections, goalkeepers_detections
|
| 399 |
)
|
|
@@ -408,9 +484,7 @@ def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 408 |
all_detections2.class_id = all_detections2.class_id.astype(int)
|
| 409 |
|
| 410 |
annotated_frame = frame.copy()
|
| 411 |
-
annotated_frame = ellipse_annotator.annotate(
|
| 412 |
-
scene=annotated_frame, detections=all_detections2
|
| 413 |
-
)
|
| 414 |
annotated_frame = label_annotator.annotate(
|
| 415 |
scene=annotated_frame, detections=all_detections2, labels=labels
|
| 416 |
)
|
|
@@ -418,10 +492,11 @@ def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 418 |
scene=annotated_frame, detections=ball_detections
|
| 419 |
)
|
| 420 |
|
|
|
|
| 421 |
annotated_path = os.path.join(out_dir, "frame_advanced.png")
|
| 422 |
save_image(annotated_path, annotated_frame)
|
| 423 |
|
| 424 |
-
# Pitch
|
| 425 |
result = FIELD_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 426 |
key_points = sv.KeyPoints.from_inference(result)
|
| 427 |
|
|
@@ -429,9 +504,7 @@ def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 429 |
frame_reference_points = key_points.xy[0][filt]
|
| 430 |
pitch_reference_points = np.array(PITCH_CONFIG.vertices)[filt]
|
| 431 |
|
| 432 |
-
transformer = ViewTransformer(
|
| 433 |
-
source=frame_reference_points, target=pitch_reference_points
|
| 434 |
-
)
|
| 435 |
|
| 436 |
frame_ball_xy = ball_detections.get_anchors_coordinates(sv.Position.BOTTOM_CENTER)
|
| 437 |
pitch_ball_xy = transformer.transform_points(points=frame_ball_xy)
|
|
@@ -442,7 +515,6 @@ def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 442 |
referees_xy = referees_detections.get_anchors_coordinates(sv.Position.BOTTOM_CENTER)
|
| 443 |
pitch_referees_xy = transformer.transform_points(points=referees_xy)
|
| 444 |
|
| 445 |
-
# radar view
|
| 446 |
radar = draw_pitch(PITCH_CONFIG)
|
| 447 |
radar = draw_points_on_pitch(
|
| 448 |
config=PITCH_CONFIG,
|
|
@@ -479,7 +551,6 @@ def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 479 |
radar_path = os.path.join(out_dir, "radar_view.png")
|
| 480 |
save_image(radar_path, radar)
|
| 481 |
|
| 482 |
-
# Voronoi classic
|
| 483 |
vor = draw_pitch(PITCH_CONFIG)
|
| 484 |
vor = draw_pitch_voronoi_diagram(
|
| 485 |
config=PITCH_CONFIG,
|
|
@@ -492,11 +563,8 @@ def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 492 |
vor_path = os.path.join(out_dir, "voronoi.png")
|
| 493 |
save_image(vor_path, vor)
|
| 494 |
|
| 495 |
-
# Blended Voronoi (your custom function)
|
| 496 |
blended = draw_pitch(
|
| 497 |
-
config=PITCH_CONFIG,
|
| 498 |
-
background_color=sv.Color.WHITE,
|
| 499 |
-
line_color=sv.Color.BLACK,
|
| 500 |
)
|
| 501 |
blended = draw_pitch_voronoi_diagram_2(
|
| 502 |
config=PITCH_CONFIG,
|
|
@@ -543,16 +611,12 @@ def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
|
| 543 |
"voronoi_blended": blended_path,
|
| 544 |
}
|
| 545 |
|
| 546 |
-
# ------------------------------------
|
| 547 |
-
# 6. Ball path & outlier cleaning – same logic
|
| 548 |
-
# ------------------------------------
|
| 549 |
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
) -> List[np.ndarray]:
|
| 553 |
-
from typing import Union
|
| 554 |
|
| 555 |
-
|
|
|
|
| 556 |
cleaned_positions: List[np.ndarray] = []
|
| 557 |
|
| 558 |
for position in positions:
|
|
@@ -572,7 +636,10 @@ def replace_outliers_based_on_distance(
|
|
| 572 |
|
| 573 |
return cleaned_positions
|
| 574 |
|
|
|
|
| 575 |
def step_ball_path(video_path: str, out_dir: str) -> Dict[str, Any]:
|
|
|
|
|
|
|
| 576 |
MAXLEN = 5
|
| 577 |
MAX_DISTANCE_THRESHOLD = 500
|
| 578 |
|
|
@@ -582,8 +649,7 @@ def step_ball_path(video_path: str, out_dir: str) -> Dict[str, Any]:
|
|
| 582 |
path_raw: List[np.ndarray] = []
|
| 583 |
M = deque(maxlen=MAXLEN)
|
| 584 |
|
| 585 |
-
|
| 586 |
-
for frame in tqdm(frame_generator, total=video_info.total_frames):
|
| 587 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 588 |
detections = sv.Detections.from_inference(result)
|
| 589 |
|
|
@@ -603,9 +669,7 @@ def step_ball_path(video_path: str, out_dir: str) -> Dict[str, Any]:
|
|
| 603 |
M.append(transformer.m)
|
| 604 |
transformer.m = np.mean(np.array(M), axis=0)
|
| 605 |
|
| 606 |
-
frame_ball_xy = ball_detections.get_anchors_coordinates(
|
| 607 |
-
sv.Position.BOTTOM_CENTER
|
| 608 |
-
)
|
| 609 |
pitch_ball_xy = transformer.transform_points(points=frame_ball_xy)
|
| 610 |
|
| 611 |
path_raw.append(pitch_ball_xy)
|
|
@@ -618,7 +682,6 @@ def step_ball_path(video_path: str, out_dir: str) -> Dict[str, Any]:
|
|
| 618 |
|
| 619 |
path_clean = replace_outliers_based_on_distance(path, MAX_DISTANCE_THRESHOLD)
|
| 620 |
|
| 621 |
-
# draw raw
|
| 622 |
raw_pitch = draw_pitch(PITCH_CONFIG)
|
| 623 |
raw_pitch = draw_paths_on_pitch(
|
| 624 |
config=PITCH_CONFIG, paths=[path], color=sv.Color.WHITE, pitch=raw_pitch
|
|
@@ -626,7 +689,6 @@ def step_ball_path(video_path: str, out_dir: str) -> Dict[str, Any]:
|
|
| 626 |
raw_path_img = os.path.join(out_dir, "ball_path_raw.png")
|
| 627 |
save_image(raw_path_img, raw_pitch)
|
| 628 |
|
| 629 |
-
# draw cleaned
|
| 630 |
clean_pitch = draw_pitch(PITCH_CONFIG)
|
| 631 |
clean_pitch = draw_paths_on_pitch(
|
| 632 |
config=PITCH_CONFIG, paths=[path_clean], color=sv.Color.WHITE, pitch=clean_pitch
|
|
@@ -634,7 +696,6 @@ def step_ball_path(video_path: str, out_dir: str) -> Dict[str, Any]:
|
|
| 634 |
cleaned_path_img = os.path.join(out_dir, "ball_path_cleaned.png")
|
| 635 |
save_image(cleaned_path_img, clean_pitch)
|
| 636 |
|
| 637 |
-
# return coords as simple list for JSON
|
| 638 |
coords_clean = [
|
| 639 |
coords.tolist() if len(coords) > 0 else [] for coords in path_clean
|
| 640 |
]
|
|
@@ -645,11 +706,13 @@ def step_ball_path(video_path: str, out_dir: str) -> Dict[str, Any]:
|
|
| 645 |
"ball_path_cleaned_coords": coords_clean,
|
| 646 |
}
|
| 647 |
|
| 648 |
-
|
| 649 |
-
#
|
| 650 |
-
|
| 651 |
|
| 652 |
def process_video_stats(video_path: str) -> Dict[str, Any]:
|
|
|
|
|
|
|
| 653 |
tracker = sv.ByteTrack()
|
| 654 |
tracker.reset()
|
| 655 |
stats = {
|
|
@@ -675,29 +738,24 @@ def process_video_stats(video_path: str) -> Dict[str, Any]:
|
|
| 675 |
stats["distance_covered"] = dict(stats["distance_covered"])
|
| 676 |
return stats
|
| 677 |
|
| 678 |
-
|
| 679 |
-
#
|
| 680 |
-
|
| 681 |
|
| 682 |
def run_full_pipeline(video_path: str, job_dir: str) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 683 |
os.makedirs(job_dir, exist_ok=True)
|
| 684 |
|
| 685 |
-
|
| 686 |
-
step_siglip_clustering(video_path, os.path.join(job_dir, "siglip"))
|
| 687 |
train_team_classifier_on_video(video_path)
|
| 688 |
|
| 689 |
-
# 2) Basic visualizations
|
| 690 |
basic_paths = step_basic_frames(video_path, os.path.join(job_dir, "frames"))
|
| 691 |
-
|
| 692 |
-
# 3) Advanced one-frame analytics (radar, Voronoi, etc.)
|
| 693 |
-
adv_paths = step_single_frame_advanced(
|
| 694 |
-
video_path, os.path.join(job_dir, "advanced")
|
| 695 |
-
)
|
| 696 |
-
|
| 697 |
-
# 4) Ball path & heatmap
|
| 698 |
ball_paths = step_ball_path(video_path, os.path.join(job_dir, "ball_path"))
|
| 699 |
-
|
| 700 |
-
# 5) Stats
|
| 701 |
stats = process_video_stats(video_path)
|
| 702 |
|
| 703 |
return {
|
|
@@ -705,6 +763,5 @@ def run_full_pipeline(video_path: str, job_dir: str) -> Dict[str, Any]:
|
|
| 705 |
"advanced": adv_paths,
|
| 706 |
"ball": ball_paths,
|
| 707 |
"stats": stats,
|
| 708 |
-
|
| 709 |
-
"siglip_html": os.path.join(job_dir, "siglip", "siglip_clusters.html"),
|
| 710 |
}
|
|
|
|
| 2 |
import os
|
| 3 |
import base64
|
| 4 |
from io import BytesIO
|
| 5 |
+
from typing import List, Dict, Any
|
| 6 |
from collections import deque, defaultdict
|
| 7 |
|
| 8 |
import numpy as np
|
|
|
|
| 10 |
import torch
|
| 11 |
from more_itertools import chunked
|
| 12 |
from PIL import Image
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
|
| 15 |
import supervision as sv
|
| 16 |
from inference import get_model
|
|
|
|
| 26 |
draw_pitch,
|
| 27 |
draw_points_on_pitch,
|
| 28 |
draw_pitch_voronoi_diagram,
|
| 29 |
+
draw_paths_on_pitch,
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# ------------------------------------------------------------------
|
| 33 |
+
# Globals – will be initialized lazily so build/startup doesn't crash
|
| 34 |
+
# ------------------------------------------------------------------
|
| 35 |
|
| 36 |
+
PLAYER_DETECTION_MODEL = None
|
| 37 |
+
FIELD_DETECTION_MODEL = None
|
| 38 |
+
EMBEDDINGS_MODEL = None
|
| 39 |
+
EMBEDDINGS_PROCESSOR = None
|
| 40 |
+
TEAM_CLASSIFIER = None
|
| 41 |
+
PITCH_CONFIG = None
|
| 42 |
|
| 43 |
BALL_ID = 0
|
| 44 |
GOALKEEPER_ID = 1
|
| 45 |
PLAYER_ID = 2
|
| 46 |
REFEREE_ID = 3
|
| 47 |
|
| 48 |
+
MODELS_READY = False
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def ensure_models_loaded():
|
| 52 |
+
"""
|
| 53 |
+
Lazily load all heavy models and config.
|
| 54 |
+
Called at the start of run_full_pipeline().
|
| 55 |
+
"""
|
| 56 |
+
global PLAYER_DETECTION_MODEL, FIELD_DETECTION_MODEL
|
| 57 |
+
global EMBEDDINGS_MODEL, EMBEDDINGS_PROCESSOR
|
| 58 |
+
global TEAM_CLASSIFIER, PITCH_CONFIG, MODELS_READY
|
| 59 |
+
|
| 60 |
+
if MODELS_READY:
|
| 61 |
+
return
|
| 62 |
+
|
| 63 |
+
roboflow_api_key = os.environ.get("ROBOFLOW_API_KEY")
|
| 64 |
+
if not roboflow_api_key:
|
| 65 |
+
raise RuntimeError(
|
| 66 |
+
"ROBOFLOW_API_KEY env var must be set in the Space secrets "
|
| 67 |
+
"(Settings → Variables and secrets)."
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Roboflow models
|
| 71 |
+
PLAYER_DETECTION_MODEL_ID = "football-players-detection-3zvbc/11"
|
| 72 |
+
FIELD_DETECTION_MODEL_ID = "football-field-detection-f07vi/14"
|
| 73 |
|
| 74 |
+
PLAYER_DETECTION_MODEL = get_model(
|
| 75 |
+
model_id=PLAYER_DETECTION_MODEL_ID, api_key=roboflow_api_key
|
| 76 |
+
)
|
| 77 |
+
FIELD_DETECTION_MODEL = get_model(
|
| 78 |
+
model_id=FIELD_DETECTION_MODEL_ID, api_key=roboflow_api_key
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# SigLIP embeddings
|
| 82 |
+
SIGLIP_MODEL_PATH = "google/siglip-base-patch16-224"
|
| 83 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 84 |
+
EMBEDDINGS_MODEL = SiglipVisionModel.from_pretrained(SIGLIP_MODEL_PATH).to(device)
|
| 85 |
+
EMBEDDINGS_PROCESSOR = AutoProcessor.from_pretrained(SIGLIP_MODEL_PATH)
|
| 86 |
+
|
| 87 |
+
# Pitch + TeamClassifier
|
| 88 |
+
PITCH_CONFIG = SoccerPitchConfiguration()
|
| 89 |
+
TEAM_CLASSIFIER = TeamClassifier(device="cuda" if torch.cuda.is_available() else "cpu")
|
| 90 |
+
|
| 91 |
+
MODELS_READY = True
|
| 92 |
|
|
|
|
| 93 |
|
| 94 |
+
def get_device():
|
| 95 |
+
return "cuda" if torch.cuda.is_available() else "cpu"
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# -------------------- utility for saving images --------------------
|
| 99 |
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
def save_image(path: str, img: np.ndarray) -> None:
|
| 102 |
os.makedirs(os.path.dirname(path), exist_ok=True)
|
|
|
|
| 103 |
if img.ndim == 3 and img.shape[2] == 3:
|
|
|
|
| 104 |
img_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 105 |
else:
|
| 106 |
img_bgr = img
|
| 107 |
cv2.imwrite(path, img_bgr)
|
| 108 |
|
| 109 |
+
|
| 110 |
+
# -------------------- 1. basic frames & detections --------------------
|
| 111 |
+
|
| 112 |
|
| 113 |
def step_basic_frames(video_path: str, out_dir: str) -> Dict[str, str]:
|
| 114 |
+
ensure_models_loaded()
|
| 115 |
+
|
| 116 |
frame_generator = sv.get_video_frames_generator(video_path)
|
| 117 |
frame = next(frame_generator)
|
| 118 |
|
|
|
|
| 119 |
raw_path = os.path.join(out_dir, "frame_raw.png")
|
| 120 |
save_image(raw_path, frame)
|
| 121 |
|
|
|
|
| 122 |
box_annotator = sv.BoxAnnotator(
|
| 123 |
+
color=sv.ColorPalette.from_hex(["#FF8C00", "#00BFFF", "#FF1493", "#FFD700"]),
|
| 124 |
+
thickness=2,
|
| 125 |
)
|
| 126 |
label_annotator = sv.LabelAnnotator(
|
| 127 |
+
color=sv.ColorPalette.from_hex(["#FF8C00", "#00BFFF", "#FF1493", "#FFD700"]),
|
| 128 |
+
text_color=sv.Color.from_hex("#000000"),
|
| 129 |
)
|
| 130 |
|
| 131 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
|
|
|
| 133 |
|
| 134 |
labels = [
|
| 135 |
f"{class_name} {confidence:.2f}"
|
| 136 |
+
for class_name, confidence in zip(detections["class_name"], detections.confidence)
|
|
|
|
| 137 |
]
|
| 138 |
|
| 139 |
annotated = frame.copy()
|
|
|
|
| 143 |
boxes_path = os.path.join(out_dir, "frame_boxes_labels.png")
|
| 144 |
save_image(boxes_path, annotated)
|
| 145 |
|
|
|
|
| 146 |
ellipse_annotator = sv.EllipseAnnotator(
|
| 147 |
+
color=sv.ColorPalette.from_hex(["#00BFFF", "#FF1493", "#FFD700"]),
|
| 148 |
+
thickness=2,
|
| 149 |
)
|
| 150 |
triangle_annotator = sv.TriangleAnnotator(
|
| 151 |
+
color=sv.Color.from_hex("#FFD700"),
|
| 152 |
base=25,
|
| 153 |
height=21,
|
| 154 |
+
outline_thickness=1,
|
| 155 |
)
|
| 156 |
|
| 157 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
|
|
|
| 177 |
"ball_players": ball_players_path,
|
| 178 |
}
|
| 179 |
|
| 180 |
+
|
| 181 |
+
# -------------------- 2. SigLIP + UMAP + KMeans + HTML --------------------
|
| 182 |
+
|
| 183 |
|
| 184 |
def step_siglip_clustering(video_path: str, out_dir: str) -> Dict[str, str]:
|
| 185 |
+
ensure_models_loaded()
|
|
|
|
|
|
|
| 186 |
|
| 187 |
+
stride = 30
|
| 188 |
+
frame_generator = sv.get_video_frames_generator(source_path=video_path, stride=stride)
|
|
|
|
| 189 |
|
| 190 |
crops = []
|
|
|
|
| 191 |
for frame in tqdm(frame_generator, desc="collecting crops (SigLIP)"):
|
| 192 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 193 |
detections = sv.Detections.from_inference(result)
|
|
|
|
| 204 |
BATCH_SIZE = 32
|
| 205 |
batches = chunked(crops_pil, BATCH_SIZE)
|
| 206 |
data = []
|
| 207 |
+
device = get_device()
|
| 208 |
with torch.no_grad():
|
| 209 |
for batch in tqdm(batches, desc="embedding extraction"):
|
| 210 |
+
inputs = EMBEDDINGS_PROCESSOR(images=batch, return_tensors="pt").to(device)
|
| 211 |
outputs = EMBEDDINGS_MODEL(**inputs)
|
| 212 |
embeddings = torch.mean(outputs.last_hidden_state, dim=1).cpu().numpy()
|
| 213 |
data.append(embeddings)
|
|
|
|
| 215 |
data = np.concatenate(data)
|
| 216 |
|
| 217 |
REDUCER = umap.UMAP(n_components=3)
|
| 218 |
+
CLUSTERING_MODEL = KMeans(n_clusters=2, n_init="auto")
|
| 219 |
|
| 220 |
projections = REDUCER.fit_transform(data)
|
| 221 |
clusters = CLUSTERING_MODEL.fit_predict(projections)
|
| 222 |
|
|
|
|
| 223 |
def pil_image_to_data_uri(image: Image.Image) -> str:
|
| 224 |
buffered = BytesIO()
|
| 225 |
image.save(buffered, format="PNG")
|
| 226 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 227 |
return f"data:image/png;base64,{img_str}"
|
| 228 |
|
| 229 |
+
image_data_uris = {f"image_{i}": pil_image_to_data_uri(img) for i, img in enumerate(crops_pil)}
|
|
|
|
|
|
|
| 230 |
image_ids = np.array([f"image_{i}" for i in range(len(crops_pil))])
|
| 231 |
|
| 232 |
traces = []
|
| 233 |
unique_labels = np.unique(clusters)
|
| 234 |
+
for lbl in unique_labels:
|
| 235 |
+
mask = clusters == lbl
|
| 236 |
customdata_masked = image_ids[mask]
|
| 237 |
trace = go.Scatter3d(
|
| 238 |
x=projections[mask][:, 0],
|
|
|
|
| 241 |
mode="markers+text",
|
| 242 |
text=clusters[mask],
|
| 243 |
customdata=customdata_masked,
|
| 244 |
+
name=str(lbl),
|
| 245 |
marker=dict(size=8),
|
| 246 |
+
hovertemplate="<b>class: %{text}</b><br>image ID: %{customdata}<extra></extra>",
|
|
|
|
|
|
|
| 247 |
)
|
| 248 |
traces.append(trace)
|
| 249 |
|
|
|
|
| 327 |
</html>
|
| 328 |
"""
|
| 329 |
|
| 330 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 331 |
html_path = os.path.join(out_dir, "siglip_clusters.html")
|
| 332 |
with open(html_path, "w", encoding="utf-8") as f:
|
| 333 |
f.write(html_template)
|
| 334 |
|
| 335 |
return {"plot_html": html_path}
|
| 336 |
|
| 337 |
+
|
| 338 |
+
# -------------------- 3. TeamClassifier training --------------------
|
| 339 |
+
|
| 340 |
|
| 341 |
def train_team_classifier_on_video(video_path: str, stride: int = 30) -> None:
|
| 342 |
+
ensure_models_loaded()
|
| 343 |
+
|
| 344 |
+
frame_generator = sv.get_video_frames_generator(source_path=video_path, stride=stride)
|
| 345 |
crops = []
|
|
|
|
| 346 |
for frame in tqdm(frame_generator, desc="collecting crops (TeamClassifier)"):
|
| 347 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 348 |
detections = sv.Detections.from_inference(result)
|
|
|
|
| 353 |
if crops:
|
| 354 |
TEAM_CLASSIFIER.fit(crops)
|
| 355 |
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
+
# -------------------- 4. goalkeeper team resolution --------------------
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
def resolve_goalkeepers_team_id(players: sv.Detections, goalkeepers: sv.Detections) -> np.ndarray:
|
| 361 |
goalkeepers_xy = goalkeepers.get_anchors_coordinates(sv.Position.BOTTOM_CENTER)
|
| 362 |
players_xy = players.get_anchors_coordinates(sv.Position.BOTTOM_CENTER)
|
| 363 |
team_0_centroid = players_xy[players.class_id == 0].mean(axis=0)
|
|
|
|
| 369 |
goalkeepers_team_id.append(0 if dist_0 < dist_1 else 1)
|
| 370 |
return np.array(goalkeepers_team_id)
|
| 371 |
|
| 372 |
+
|
| 373 |
+
# -------------------- 5. Voronoi blend helper (your function) --------------------
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def draw_pitch_voronoi_diagram_2(
|
| 377 |
+
config: SoccerPitchConfiguration,
|
| 378 |
+
team_1_xy: np.ndarray,
|
| 379 |
+
team_2_xy: np.ndarray,
|
| 380 |
+
team_1_color: sv.Color = sv.Color.RED,
|
| 381 |
+
team_2_color: sv.Color = sv.Color.WHITE,
|
| 382 |
+
opacity: float = 0.5,
|
| 383 |
+
padding: int = 50,
|
| 384 |
+
scale: float = 0.1,
|
| 385 |
+
pitch: np.ndarray | None = None,
|
| 386 |
+
) -> np.ndarray:
|
| 387 |
+
if pitch is None:
|
| 388 |
+
pitch = draw_pitch(config=config, padding=padding, scale=scale)
|
| 389 |
+
|
| 390 |
+
scaled_width = int(config.width * scale)
|
| 391 |
+
scaled_length = int(config.length * scale)
|
| 392 |
+
|
| 393 |
+
voronoi = np.zeros_like(pitch, dtype=np.uint8)
|
| 394 |
+
|
| 395 |
+
team_1_color_bgr = np.array(team_1_color.as_bgr(), dtype=np.uint8)
|
| 396 |
+
team_2_color_bgr = np.array(team_2_color.as_bgr(), dtype=np.uint8)
|
| 397 |
+
|
| 398 |
+
y_coordinates, x_coordinates = np.indices((scaled_width + 2 * padding, scaled_length + 2 * padding))
|
| 399 |
+
y_coordinates -= padding
|
| 400 |
+
x_coordinates -= padding
|
| 401 |
+
|
| 402 |
+
def calculate_distances(xy, x_coordinates, y_coordinates):
|
| 403 |
+
return np.sqrt(
|
| 404 |
+
(xy[:, 0][:, None, None] * scale - x_coordinates) ** 2
|
| 405 |
+
+ (xy[:, 1][:, None, None] * scale - y_coordinates) ** 2
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
distances_team_1 = calculate_distances(team_1_xy, x_coordinates, y_coordinates)
|
| 409 |
+
distances_team_2 = calculate_distances(team_2_xy, x_coordinates, y_coordinates)
|
| 410 |
+
|
| 411 |
+
min_distances_team_1 = np.min(distances_team_1, axis=0)
|
| 412 |
+
min_distances_team_2 = np.min(distances_team_2, axis=0)
|
| 413 |
+
|
| 414 |
+
steepness = 15
|
| 415 |
+
distance_ratio = min_distances_team_2 / np.clip(
|
| 416 |
+
min_distances_team_1 + min_distances_team_2, a_min=1e-5, a_max=None
|
| 417 |
+
)
|
| 418 |
+
blend_factor = np.tanh((distance_ratio - 0.5) * steepness) * 0.5 + 0.5
|
| 419 |
+
|
| 420 |
+
for c in range(3):
|
| 421 |
+
voronoi[:, :, c] = (
|
| 422 |
+
blend_factor * team_1_color_bgr[c] + (1 - blend_factor) * team_2_color_bgr[c]
|
| 423 |
+
).astype(np.uint8)
|
| 424 |
+
|
| 425 |
+
overlay = cv2.addWeighted(voronoi, opacity, pitch, 1 - opacity, 0)
|
| 426 |
+
return overlay
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
# -------------------- 6. single-frame advanced views --------------------
|
| 430 |
+
|
| 431 |
|
| 432 |
def step_single_frame_advanced(video_path: str, out_dir: str) -> Dict[str, str]:
|
| 433 |
+
ensure_models_loaded()
|
| 434 |
+
|
| 435 |
frame_generator = sv.get_video_frames_generator(video_path)
|
| 436 |
frame = next(frame_generator)
|
| 437 |
|
| 438 |
ellipse_annotator = sv.EllipseAnnotator(
|
| 439 |
+
color=sv.ColorPalette.from_hex(["#00BFFF", "#FF1493", "#FFD700"]),
|
| 440 |
thickness=2,
|
| 441 |
)
|
| 442 |
label_annotator = sv.LabelAnnotator(
|
| 443 |
+
color=sv.ColorPalette.from_hex(["#00BFFF", "#FF1493", "#FFD700"]),
|
| 444 |
+
text_color=sv.Color.from_hex("#000000"),
|
| 445 |
text_position=sv.Position.BOTTOM_CENTER,
|
| 446 |
)
|
| 447 |
triangle_annotator = sv.TriangleAnnotator(
|
|
|
|
| 451 |
tracker = sv.ByteTrack()
|
| 452 |
tracker.reset()
|
| 453 |
|
|
|
|
| 454 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 455 |
detections = sv.Detections.from_inference(result)
|
| 456 |
|
|
|
|
| 466 |
referees_detections = all_detections[all_detections.class_id == REFEREE_ID]
|
| 467 |
|
| 468 |
players_crops = [sv.crop_image(frame, xyxy) for xyxy in players_detections.xyxy]
|
| 469 |
+
if players_crops:
|
| 470 |
+
players_detections.class_id = TEAM_CLASSIFIER.predict(players_crops)
|
| 471 |
|
| 472 |
+
if len(goalkeepers_detections) > 0 and len(players_detections) > 0:
|
| 473 |
goalkeepers_detections.class_id = resolve_goalkeepers_team_id(
|
| 474 |
players_detections, goalkeepers_detections
|
| 475 |
)
|
|
|
|
| 484 |
all_detections2.class_id = all_detections2.class_id.astype(int)
|
| 485 |
|
| 486 |
annotated_frame = frame.copy()
|
| 487 |
+
annotated_frame = ellipse_annotator.annotate(scene=annotated_frame, detections=all_detections2)
|
|
|
|
|
|
|
| 488 |
annotated_frame = label_annotator.annotate(
|
| 489 |
scene=annotated_frame, detections=all_detections2, labels=labels
|
| 490 |
)
|
|
|
|
| 492 |
scene=annotated_frame, detections=ball_detections
|
| 493 |
)
|
| 494 |
|
| 495 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 496 |
annotated_path = os.path.join(out_dir, "frame_advanced.png")
|
| 497 |
save_image(annotated_path, annotated_frame)
|
| 498 |
|
| 499 |
+
# Pitch + radar + Voronoi
|
| 500 |
result = FIELD_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 501 |
key_points = sv.KeyPoints.from_inference(result)
|
| 502 |
|
|
|
|
| 504 |
frame_reference_points = key_points.xy[0][filt]
|
| 505 |
pitch_reference_points = np.array(PITCH_CONFIG.vertices)[filt]
|
| 506 |
|
| 507 |
+
transformer = ViewTransformer(source=frame_reference_points, target=pitch_reference_points)
|
|
|
|
|
|
|
| 508 |
|
| 509 |
frame_ball_xy = ball_detections.get_anchors_coordinates(sv.Position.BOTTOM_CENTER)
|
| 510 |
pitch_ball_xy = transformer.transform_points(points=frame_ball_xy)
|
|
|
|
| 515 |
referees_xy = referees_detections.get_anchors_coordinates(sv.Position.BOTTOM_CENTER)
|
| 516 |
pitch_referees_xy = transformer.transform_points(points=referees_xy)
|
| 517 |
|
|
|
|
| 518 |
radar = draw_pitch(PITCH_CONFIG)
|
| 519 |
radar = draw_points_on_pitch(
|
| 520 |
config=PITCH_CONFIG,
|
|
|
|
| 551 |
radar_path = os.path.join(out_dir, "radar_view.png")
|
| 552 |
save_image(radar_path, radar)
|
| 553 |
|
|
|
|
| 554 |
vor = draw_pitch(PITCH_CONFIG)
|
| 555 |
vor = draw_pitch_voronoi_diagram(
|
| 556 |
config=PITCH_CONFIG,
|
|
|
|
| 563 |
vor_path = os.path.join(out_dir, "voronoi.png")
|
| 564 |
save_image(vor_path, vor)
|
| 565 |
|
|
|
|
| 566 |
blended = draw_pitch(
|
| 567 |
+
config=PITCH_CONFIG, background_color=sv.Color.WHITE, line_color=sv.Color.BLACK
|
|
|
|
|
|
|
| 568 |
)
|
| 569 |
blended = draw_pitch_voronoi_diagram_2(
|
| 570 |
config=PITCH_CONFIG,
|
|
|
|
| 611 |
"voronoi_blended": blended_path,
|
| 612 |
}
|
| 613 |
|
|
|
|
|
|
|
|
|
|
| 614 |
|
| 615 |
+
# -------------------- 7. ball path & cleaning --------------------
|
| 616 |
+
|
|
|
|
|
|
|
| 617 |
|
| 618 |
+
def replace_outliers_based_on_distance(positions: List[np.ndarray], distance_threshold: float) -> List[np.ndarray]:
|
| 619 |
+
last_valid_position = None
|
| 620 |
cleaned_positions: List[np.ndarray] = []
|
| 621 |
|
| 622 |
for position in positions:
|
|
|
|
| 636 |
|
| 637 |
return cleaned_positions
|
| 638 |
|
| 639 |
+
|
| 640 |
def step_ball_path(video_path: str, out_dir: str) -> Dict[str, Any]:
|
| 641 |
+
ensure_models_loaded()
|
| 642 |
+
|
| 643 |
MAXLEN = 5
|
| 644 |
MAX_DISTANCE_THRESHOLD = 500
|
| 645 |
|
|
|
|
| 649 |
path_raw: List[np.ndarray] = []
|
| 650 |
M = deque(maxlen=MAXLEN)
|
| 651 |
|
| 652 |
+
for frame in tqdm(frame_generator, total=video_info.total_frames, desc="ball path"):
|
|
|
|
| 653 |
result = PLAYER_DETECTION_MODEL.infer(frame, confidence=0.3)[0]
|
| 654 |
detections = sv.Detections.from_inference(result)
|
| 655 |
|
|
|
|
| 669 |
M.append(transformer.m)
|
| 670 |
transformer.m = np.mean(np.array(M), axis=0)
|
| 671 |
|
| 672 |
+
frame_ball_xy = ball_detections.get_anchors_coordinates(sv.Position.BOTTOM_CENTER)
|
|
|
|
|
|
|
| 673 |
pitch_ball_xy = transformer.transform_points(points=frame_ball_xy)
|
| 674 |
|
| 675 |
path_raw.append(pitch_ball_xy)
|
|
|
|
| 682 |
|
| 683 |
path_clean = replace_outliers_based_on_distance(path, MAX_DISTANCE_THRESHOLD)
|
| 684 |
|
|
|
|
| 685 |
raw_pitch = draw_pitch(PITCH_CONFIG)
|
| 686 |
raw_pitch = draw_paths_on_pitch(
|
| 687 |
config=PITCH_CONFIG, paths=[path], color=sv.Color.WHITE, pitch=raw_pitch
|
|
|
|
| 689 |
raw_path_img = os.path.join(out_dir, "ball_path_raw.png")
|
| 690 |
save_image(raw_path_img, raw_pitch)
|
| 691 |
|
|
|
|
| 692 |
clean_pitch = draw_pitch(PITCH_CONFIG)
|
| 693 |
clean_pitch = draw_paths_on_pitch(
|
| 694 |
config=PITCH_CONFIG, paths=[path_clean], color=sv.Color.WHITE, pitch=clean_pitch
|
|
|
|
| 696 |
cleaned_path_img = os.path.join(out_dir, "ball_path_cleaned.png")
|
| 697 |
save_image(cleaned_path_img, clean_pitch)
|
| 698 |
|
|
|
|
| 699 |
coords_clean = [
|
| 700 |
coords.tolist() if len(coords) > 0 else [] for coords in path_clean
|
| 701 |
]
|
|
|
|
| 706 |
"ball_path_cleaned_coords": coords_clean,
|
| 707 |
}
|
| 708 |
|
| 709 |
+
|
| 710 |
+
# -------------------- 8. stats-only process_video --------------------
|
| 711 |
+
|
| 712 |
|
| 713 |
def process_video_stats(video_path: str) -> Dict[str, Any]:
|
| 714 |
+
ensure_models_loaded()
|
| 715 |
+
|
| 716 |
tracker = sv.ByteTrack()
|
| 717 |
tracker.reset()
|
| 718 |
stats = {
|
|
|
|
| 738 |
stats["distance_covered"] = dict(stats["distance_covered"])
|
| 739 |
return stats
|
| 740 |
|
| 741 |
+
|
| 742 |
+
# -------------------- 9. full pipeline entrypoint --------------------
|
| 743 |
+
|
| 744 |
|
| 745 |
def run_full_pipeline(video_path: str, job_dir: str) -> Dict[str, Any]:
|
| 746 |
+
"""
|
| 747 |
+
Run the full notebook-equivalent pipeline on a video and save all artifacts
|
| 748 |
+
into job_dir. Returns paths + stats for the FastAPI app.
|
| 749 |
+
"""
|
| 750 |
+
ensure_models_loaded()
|
| 751 |
os.makedirs(job_dir, exist_ok=True)
|
| 752 |
|
| 753 |
+
siglip_out = step_siglip_clustering(video_path, os.path.join(job_dir, "siglip"))
|
|
|
|
| 754 |
train_team_classifier_on_video(video_path)
|
| 755 |
|
|
|
|
| 756 |
basic_paths = step_basic_frames(video_path, os.path.join(job_dir, "frames"))
|
| 757 |
+
adv_paths = step_single_frame_advanced(video_path, os.path.join(job_dir, "advanced"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 758 |
ball_paths = step_ball_path(video_path, os.path.join(job_dir, "ball_path"))
|
|
|
|
|
|
|
| 759 |
stats = process_video_stats(video_path)
|
| 760 |
|
| 761 |
return {
|
|
|
|
| 763 |
"advanced": adv_paths,
|
| 764 |
"ball": ball_paths,
|
| 765 |
"stats": stats,
|
| 766 |
+
"siglip_html": siglip_out["plot_html"],
|
|
|
|
| 767 |
}
|