File size: 4,901 Bytes
ecb5889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import uuid
import shutil
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image
from transformers import AutoModelForImageTextToText, AutoProcessor
from transformers.image_utils import load_image
model_name = "stepfun-ai/GOT-OCR-2.0-hf"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForImageTextToText.from_pretrained(
model_name, low_cpu_mem_usage=True, device_map=device
)
model = model.eval().to(device)
UPLOAD_FOLDER = "./uploads"
stop_str = "<|im_end|>"
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
@spaces.GPU()
def process_ocr(image):
if image is None:
return "⚠️ Please upload an image first"
unique_id = str(uuid.uuid4())
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
try:
# Handle different image formats
if isinstance(image, np.ndarray):
cv2.imwrite(image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
elif isinstance(image, str):
shutil.copy(image, image_path)
else:
return "⚠️ Unsupported image format"
image = load_image(image_path)
# Process with OCR
inputs = processor([image], return_tensors="pt").to(device)
generate_ids = model.generate(
**inputs,
do_sample=False,
tokenizer=processor.tokenizer,
stop_strings=stop_str,
max_new_tokens=4096,
)
result = processor.decode(
generate_ids[0, inputs["input_ids"].shape[1]:],
skip_special_tokens=True,
)
return result
except Exception as e:
return f"❌ Error: {str(e)}"
finally:
if os.path.exists(image_path):
os.remove(image_path)
# Custom CSS for modern, minimal design
custom_css = """
#header {
text-align: center;
padding: 2rem 0;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 12px;
margin-bottom: 2rem;
}
#header h1 {
margin: 0;
font-size: 2.5rem;
font-weight: 700;
letter-spacing: -0.5px;
}
#header p {
margin: 0.5rem 0 0 0;
font-size: 1.1rem;
opacity: 0.95;
}
.main-container {
max-width: 1200px;
margin: 0 auto;
}
#image_input {
border: 2px dashed #667eea !important;
border-radius: 12px !important;
transition: all 0.3s ease;
}
#image_input:hover {
border-color: #764ba2 !important;
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.15);
}
#process_btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
font-size: 1.1rem !important;
font-weight: 600 !important;
padding: 0.75rem 2rem !important;
border-radius: 8px !important;
transition: all 0.3s ease !important;
}
#process_btn:hover {
transform: translateY(-2px);
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.3) !important;
}
#output_text {
border-radius: 12px !important;
font-family: 'Monaco', 'Courier New', monospace !important;
font-size: 0.95rem !important;
line-height: 1.6 !important;
}
.input-section, .output-section {
background: white;
padding: 1.5rem;
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
}
footer {
text-align: center;
padding: 2rem 0;
color: #666;
font-size: 0.9rem;
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div id="header">
<h1>✨ GOT-OCR 2.0</h1>
<p>Extract text from images with AI-powered OCR</p>
</div>
""")
with gr.Row(elem_classes="main-container"):
with gr.Column(scale=1, elem_classes="input-section"):
image_input = gr.Image(
type="filepath",
label="📸 Upload Image",
elem_id="image_input",
height=400
)
process_btn = gr.Button(
"🚀 Extract Text",
elem_id="process_btn",
size="lg"
)
with gr.Column(scale=1, elem_classes="output-section"):
output_text = gr.Textbox(
label="📝 Extracted Text",
elem_id="output_text",
lines=20,
placeholder="Your extracted text will appear here...",
show_copy_button=True
)
gr.HTML("""
<footer>
<p>Powered by GOT-OCR-2.0-hf | Built with Gradio</p>
</footer>
""")
# Connect the button to the processing function
process_btn.click(
fn=process_ocr,
inputs=[image_input],
outputs=[output_text]
)
if __name__ == "__main__":
demo.launch() |