Spaces:
Build error
Build error
initial_commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import zipfile
|
| 2 |
+
def unzip_content():
|
| 3 |
+
try:
|
| 4 |
+
# First try using Python's zipfile
|
| 5 |
+
print("Attempting to unzip content using Python...")
|
| 6 |
+
with zipfile.ZipFile('./content.zip', 'r') as zip_ref:
|
| 7 |
+
zip_ref.extractall('.')
|
| 8 |
+
except Exception as e:
|
| 9 |
+
print(f"Python unzip failed: {str(e)}")
|
| 10 |
+
try:
|
| 11 |
+
# Fallback to system unzip command
|
| 12 |
+
print("Attempting to unzip content using system command...")
|
| 13 |
+
subprocess.run(['unzip', '-o', './content.zip'], check=True)
|
| 14 |
+
except Exception as e:
|
| 15 |
+
print(f"System unzip failed: {str(e)}")
|
| 16 |
+
raise Exception("Failed to unzip content using both methods")
|
| 17 |
+
print("Content successfully unzipped!")
|
| 18 |
+
|
| 19 |
+
# Try to unzip content at startup
|
| 20 |
+
try:
|
| 21 |
+
unzip_content()
|
| 22 |
+
except Exception as e:
|
| 23 |
+
print(f"Warning: Could not unzip content: {str(e)}")
|
| 24 |
+
|
| 25 |
+
import gradio as gr
|
| 26 |
+
import numpy as np
|
| 27 |
+
import torch
|
| 28 |
+
import torchvision
|
| 29 |
+
import torchvision.transforms
|
| 30 |
+
import torchvision.transforms.functional
|
| 31 |
+
import PIL
|
| 32 |
+
import matplotlib.pyplot as plt
|
| 33 |
+
import yaml
|
| 34 |
+
from omegaconf import OmegaConf
|
| 35 |
+
from CLIP import clip
|
| 36 |
+
import os
|
| 37 |
+
os.chdir('./taming-transformers')
|
| 38 |
+
from taming.models.vqgan import VQModel
|
| 39 |
+
os.chdir('..')
|
| 40 |
+
from PIL import Image
|
| 41 |
+
import cv2
|
| 42 |
+
import imageio
|
| 43 |
+
|
| 44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
+
|
| 46 |
+
def create_video(image_folder='./generated', video_name='morphing_video.mp4'):
|
| 47 |
+
images = sorted([img for img in os.listdir(image_folder) if img.endswith(".png") or img.endswith(".jpg")])
|
| 48 |
+
if len(images) == 0:
|
| 49 |
+
print("No images found in the folder.")
|
| 50 |
+
return None
|
| 51 |
+
|
| 52 |
+
frame = cv2.imread(os.path.join(image_folder, images[0]))
|
| 53 |
+
height, width, layers = frame.shape
|
| 54 |
+
video_writer = imageio.get_writer(video_name, fps=10)
|
| 55 |
+
|
| 56 |
+
for image in images:
|
| 57 |
+
img_path = os.path.join(image_folder, image)
|
| 58 |
+
img = imageio.imread(img_path)
|
| 59 |
+
video_writer.append_data(img)
|
| 60 |
+
|
| 61 |
+
video_writer.close()
|
| 62 |
+
return video_name
|
| 63 |
+
|
| 64 |
+
def save_from_tensors(tensor, output_dir, filename):
|
| 65 |
+
img = tensor.clone()
|
| 66 |
+
img = img.mul(255).byte()
|
| 67 |
+
img = img.cpu().numpy().transpose((1, 2, 0))
|
| 68 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 69 |
+
Image.fromarray(img).save(os.path.join(output_dir, filename))
|
| 70 |
+
|
| 71 |
+
def norm_data(data):
|
| 72 |
+
return (data.clip(-1, 1) + 1) / 2
|
| 73 |
+
|
| 74 |
+
def setup_clip_model():
|
| 75 |
+
model, _ = clip.load('ViT-B/32', jit=False)
|
| 76 |
+
model.eval().to(device)
|
| 77 |
+
return model
|
| 78 |
+
|
| 79 |
+
def setup_vqgan_model(config_path, checkpoint_path):
|
| 80 |
+
config = OmegaConf.load(config_path)
|
| 81 |
+
model = VQModel(**config.model.params)
|
| 82 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
|
| 83 |
+
model.load_state_dict(state_dict, strict=False)
|
| 84 |
+
return model.eval().to(device)
|
| 85 |
+
|
| 86 |
+
def generator(x, model):
|
| 87 |
+
x = model.post_quant_conv(x)
|
| 88 |
+
x = model.decoder(x)
|
| 89 |
+
return x
|
| 90 |
+
|
| 91 |
+
def encode_text(text, clip_model):
|
| 92 |
+
t = clip.tokenize(text).to(device)
|
| 93 |
+
return clip_model.encode_text(t).detach().clone()
|
| 94 |
+
|
| 95 |
+
def create_encoding(include, exclude, extras, clip_model):
|
| 96 |
+
include_enc = [encode_text(text, clip_model) for text in include]
|
| 97 |
+
exclude_enc = [encode_text(text, clip_model) for text in exclude]
|
| 98 |
+
extras_enc = [encode_text(text, clip_model) for text in extras]
|
| 99 |
+
return include_enc, exclude_enc, extras_enc
|
| 100 |
+
|
| 101 |
+
def create_crops(img, num_crops=32, size1=225, noise_factor=0.05):
|
| 102 |
+
aug_transform = torch.nn.Sequential(
|
| 103 |
+
torchvision.transforms.RandomHorizontalFlip(),
|
| 104 |
+
torchvision.transforms.RandomAffine(30, translate=(0.1, 0.1), fill=0)
|
| 105 |
+
).to(device)
|
| 106 |
+
|
| 107 |
+
p = size1 // 2
|
| 108 |
+
img = torch.nn.functional.pad(img, (p, p, p, p), mode='constant', value=0)
|
| 109 |
+
img = aug_transform(img)
|
| 110 |
+
|
| 111 |
+
crop_set = []
|
| 112 |
+
for _ in range(num_crops):
|
| 113 |
+
gap1 = int(torch.normal(1.2, .3, ()).clip(.43, 1.9) * size1)
|
| 114 |
+
offsetx = torch.randint(0, int(size1 * 2 - gap1), ())
|
| 115 |
+
offsety = torch.randint(0, int(size1 * 2 - gap1), ())
|
| 116 |
+
crop = img[:, :, offsetx:offsetx + gap1, offsety:offsety + gap1]
|
| 117 |
+
crop = torch.nn.functional.interpolate(crop, (224, 224), mode='bilinear', align_corners=True)
|
| 118 |
+
crop_set.append(crop)
|
| 119 |
+
|
| 120 |
+
img_crops = torch.cat(crop_set, 0)
|
| 121 |
+
randnormal = torch.randn_like(img_crops, requires_grad=False)
|
| 122 |
+
randstotal = torch.rand((img_crops.shape[0], 1, 1, 1)).to(device)
|
| 123 |
+
img_crops = img_crops + noise_factor * randstotal * randnormal
|
| 124 |
+
|
| 125 |
+
return img_crops
|
| 126 |
+
|
| 127 |
+
def optimize_result(params, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc):
|
| 128 |
+
alpha = 1
|
| 129 |
+
beta = 0.5
|
| 130 |
+
out = generator(params, vqgan_model)
|
| 131 |
+
out = norm_data(out)
|
| 132 |
+
out = create_crops(out)
|
| 133 |
+
out = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
|
| 134 |
+
(0.26862954, 0.26130258, 0.27577711))(out)
|
| 135 |
+
|
| 136 |
+
img_enc = clip_model.encode_image(out)
|
| 137 |
+
final_enc = w1 * prompt + w2 * extras_enc[0]
|
| 138 |
+
final_text_include_enc = final_enc / final_enc.norm(dim=-1, keepdim=True)
|
| 139 |
+
final_text_exclude_enc = exclude_enc[0]
|
| 140 |
+
|
| 141 |
+
main_loss = torch.cosine_similarity(final_text_include_enc, img_enc, dim=-1)
|
| 142 |
+
penalize_loss = torch.cosine_similarity(final_text_exclude_enc, img_enc, dim=-1)
|
| 143 |
+
|
| 144 |
+
return -alpha * main_loss.mean() + beta * penalize_loss.mean()
|
| 145 |
+
|
| 146 |
+
def optimize(params, optimizer, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc):
|
| 147 |
+
loss = optimize_result(params, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc)
|
| 148 |
+
optimizer.zero_grad()
|
| 149 |
+
loss.backward()
|
| 150 |
+
optimizer.step()
|
| 151 |
+
return loss
|
| 152 |
+
|
| 153 |
+
def training_loop(params, optimizer, include_enc, exclude_enc, extras_enc, vqgan_model, clip_model, w1, w2,
|
| 154 |
+
total_iter=200, show_step=1):
|
| 155 |
+
res_img = []
|
| 156 |
+
res_z = []
|
| 157 |
+
|
| 158 |
+
for prompt in include_enc:
|
| 159 |
+
for it in range(total_iter):
|
| 160 |
+
loss = optimize(params, optimizer, prompt, vqgan_model, clip_model, w1, w2, extras_enc, exclude_enc)
|
| 161 |
+
|
| 162 |
+
if it >= 0 and it % show_step == 0:
|
| 163 |
+
with torch.no_grad():
|
| 164 |
+
generated = generator(params, vqgan_model)
|
| 165 |
+
new_img = norm_data(generated[0].to(device))
|
| 166 |
+
res_img.append(new_img)
|
| 167 |
+
res_z.append(params.clone().detach())
|
| 168 |
+
print(f"loss: {loss.item():.4f}\nno. of iteration: {it}")
|
| 169 |
+
|
| 170 |
+
torch.cuda.empty_cache()
|
| 171 |
+
return res_img, res_z
|
| 172 |
+
|
| 173 |
+
def generate_art(include_text, exclude_text, extras_text, num_iterations):
|
| 174 |
+
try:
|
| 175 |
+
# Process the input prompts
|
| 176 |
+
include = [x.strip() for x in include_text.split(',')]
|
| 177 |
+
exclude = [x.strip() for x in exclude_text.split(',')]
|
| 178 |
+
extras = [x.strip() for x in extras_text.split(',')]
|
| 179 |
+
|
| 180 |
+
w1, w2 = 1.0, 0.9
|
| 181 |
+
|
| 182 |
+
# Setup models
|
| 183 |
+
clip_model = setup_clip_model()
|
| 184 |
+
vqgan_model = setup_vqgan_model("./models/vqgan_imagenet_f16_16384/configs/model.yaml",
|
| 185 |
+
"./models/vqgan_imagenet_f16_16384/checkpoints/last.ckpt")
|
| 186 |
+
|
| 187 |
+
# Parameters
|
| 188 |
+
learning_rate = 0.1
|
| 189 |
+
batch_size = 1
|
| 190 |
+
wd = 0.1
|
| 191 |
+
size1, size2 = 225, 400
|
| 192 |
+
|
| 193 |
+
# Initialize parameters
|
| 194 |
+
initial_image = PIL.Image.open('./gradient1.png')
|
| 195 |
+
initial_image = initial_image.resize((size2, size1))
|
| 196 |
+
initial_image = torchvision.transforms.ToTensor()(initial_image).unsqueeze(0).to(device)
|
| 197 |
+
|
| 198 |
+
with torch.no_grad():
|
| 199 |
+
z, _, _ = vqgan_model.encode(initial_image)
|
| 200 |
+
|
| 201 |
+
params = torch.nn.Parameter(z).to(device)
|
| 202 |
+
optimizer = torch.optim.AdamW([params], lr=learning_rate, weight_decay=wd)
|
| 203 |
+
params.data = params.data * 0.6 + torch.randn_like(params.data) * 0.4
|
| 204 |
+
|
| 205 |
+
# Encode prompts
|
| 206 |
+
include_enc, exclude_enc, extras_enc = create_encoding(include, exclude, extras, clip_model)
|
| 207 |
+
|
| 208 |
+
# Run training loop
|
| 209 |
+
res_img, res_z = training_loop(params, optimizer, include_enc, exclude_enc, extras_enc,
|
| 210 |
+
vqgan_model, clip_model, w1, w2, total_iter=num_iterations)
|
| 211 |
+
|
| 212 |
+
# Save results
|
| 213 |
+
output_dir = "generated"
|
| 214 |
+
# Create output directory if it doesn't exist
|
| 215 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 216 |
+
|
| 217 |
+
# Clear any existing files in the output directory
|
| 218 |
+
for file in os.listdir(output_dir):
|
| 219 |
+
file_path = os.path.join(output_dir, file)
|
| 220 |
+
if os.path.isfile(file_path):
|
| 221 |
+
os.remove(file_path)
|
| 222 |
+
|
| 223 |
+
for i, img in enumerate(res_img):
|
| 224 |
+
save_from_tensors(img, output_dir, f"generated_image_{i:03d}.png")
|
| 225 |
+
|
| 226 |
+
# Create video
|
| 227 |
+
video_path = create_video()
|
| 228 |
+
|
| 229 |
+
# Delete the generated folder and its contents after creating the video
|
| 230 |
+
import shutil
|
| 231 |
+
shutil.rmtree(output_dir)
|
| 232 |
+
|
| 233 |
+
return video_path
|
| 234 |
+
|
| 235 |
+
except Exception as e:
|
| 236 |
+
# If there's an error, ensure the generated folder is cleaned up
|
| 237 |
+
if os.path.exists("generated"):
|
| 238 |
+
import shutil
|
| 239 |
+
shutil.rmtree("generated")
|
| 240 |
+
raise e # Re-raise the exception to be handled by the calling function
|
| 241 |
+
def gradio_interface(include_text, exclude_text, extras_text, num_iterations):
|
| 242 |
+
try:
|
| 243 |
+
video_path = generate_art(include_text, exclude_text, extras_text, int(num_iterations))
|
| 244 |
+
return video_path
|
| 245 |
+
except Exception as e:
|
| 246 |
+
return f"An error occurred: {str(e)}"
|
| 247 |
+
|
| 248 |
+
# Define and launch the Gradio app
|
| 249 |
+
iface = gr.Interface(
|
| 250 |
+
fn=gradio_interface,
|
| 251 |
+
inputs=[
|
| 252 |
+
gr.Textbox(label="Include Prompts (comma-separated)",
|
| 253 |
+
value="desert, heavy rain, cactus"),
|
| 254 |
+
gr.Textbox(label="Exclude Prompts (comma-separated)",
|
| 255 |
+
value="confusing, blurry"),
|
| 256 |
+
gr.Textbox(label="Extra Style Prompts (comma-separated)",
|
| 257 |
+
value="desert, clear, detailed, beautiful, good shape, detailed"),
|
| 258 |
+
gr.Number(label="Number of Iterations",
|
| 259 |
+
value=200, minimum=1, maximum=1000)
|
| 260 |
+
],
|
| 261 |
+
outputs=gr.Video(label="Generated Morphing Video"),
|
| 262 |
+
title="VQGAN-CLIP Art Generator",
|
| 263 |
+
description="""
|
| 264 |
+
[](https://colab.research.google.com/drive/1ivRYvTaX90PRghQIqAdOyEawkY0YLefa?authuser=0#scrollTo=WE7aPQ0t1hd2)
|
| 265 |
+
[](https://huggingface.co/spaces/your-username/your-space-name?duplicate=true)
|
| 266 |
+
|
| 267 |
+
Generate artistic videos using VQGAN-CLIP.
|
| 268 |
+
Enter your prompts separated by commas and adjust the number of iterations.
|
| 269 |
+
The model will generate a morphing video based on your inputs.
|
| 270 |
+
|
| 271 |
+
**Note:** This application requires GPU access. Please either:
|
| 272 |
+
1. Use the Colab notebook (click the Colab badge above) with GPU runtime
|
| 273 |
+
2. Clone this space (click Clone Space badge) and enable GPU in your personal copy""",
|
| 274 |
+
css="""
|
| 275 |
+
.gradio-container {
|
| 276 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
| 277 |
+
}
|
| 278 |
+
.gr-button {
|
| 279 |
+
color: white;
|
| 280 |
+
border-radius: 7px;
|
| 281 |
+
background: linear-gradient(45deg, #7747FF, #FF3557);
|
| 282 |
+
border: none;
|
| 283 |
+
height: 46px;
|
| 284 |
+
}
|
| 285 |
+
a {
|
| 286 |
+
text-decoration: none;
|
| 287 |
+
}
|
| 288 |
+
.maintenance-msg {
|
| 289 |
+
color: #FF0000;
|
| 290 |
+
font-size: 14px;
|
| 291 |
+
margin-top: 10px;
|
| 292 |
+
}
|
| 293 |
+
"""
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
if __name__ == "__main__":
|
| 297 |
+
print("Checking GPU availability:", "GPU AVAILABLE" if torch.cuda.is_available() else "NO GPU FOUND")
|
| 298 |
+
iface.launch()
|