Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,26 +2,30 @@ import torch
|
|
| 2 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 3 |
from PIL import Image
|
| 4 |
|
| 5 |
-
# β
Define the model name from Hugging Face
|
| 6 |
MODEL_NAME = "deepseek-ai/deepseek-vl2-small"
|
| 7 |
|
| 8 |
-
# β
Load model
|
| 9 |
-
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 10 |
-
model = AutoModelForVision2Seq.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
# β
Test
|
| 13 |
def predict(image_path):
|
| 14 |
image = Image.open(image_path).convert("RGB")
|
| 15 |
-
|
| 16 |
# Process input
|
| 17 |
inputs = processor(images=image, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
|
| 19 |
# Generate output
|
| 20 |
output = model.generate(**inputs)
|
| 21 |
-
|
| 22 |
# Decode response
|
| 23 |
generated_text = processor.batch_decode(output, skip_special_tokens=True)[0]
|
| 24 |
-
|
| 25 |
return generated_text
|
| 26 |
|
| 27 |
# β
Example Usage
|
|
|
|
| 2 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 3 |
from PIL import Image
|
| 4 |
|
| 5 |
+
# β
Define the correct model name from Hugging Face
|
| 6 |
MODEL_NAME = "deepseek-ai/deepseek-vl2-small"
|
| 7 |
|
| 8 |
+
# β
Load processor & model with `trust_remote_code=True`
|
| 9 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 10 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 11 |
+
MODEL_NAME,
|
| 12 |
+
torch_dtype=torch.float16,
|
| 13 |
+
trust_remote_code=True # β
This allows loading custom model implementations
|
| 14 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
|
| 16 |
+
# β
Test function to process an image
|
| 17 |
def predict(image_path):
|
| 18 |
image = Image.open(image_path).convert("RGB")
|
| 19 |
+
|
| 20 |
# Process input
|
| 21 |
inputs = processor(images=image, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
| 22 |
|
| 23 |
# Generate output
|
| 24 |
output = model.generate(**inputs)
|
| 25 |
+
|
| 26 |
# Decode response
|
| 27 |
generated_text = processor.batch_decode(output, skip_special_tokens=True)[0]
|
| 28 |
+
|
| 29 |
return generated_text
|
| 30 |
|
| 31 |
# β
Example Usage
|